Here are two important types of binary trees. Note that the definitions, while similar, are logically independent.

<u>Definition</u>: a binary tree T is *full* if

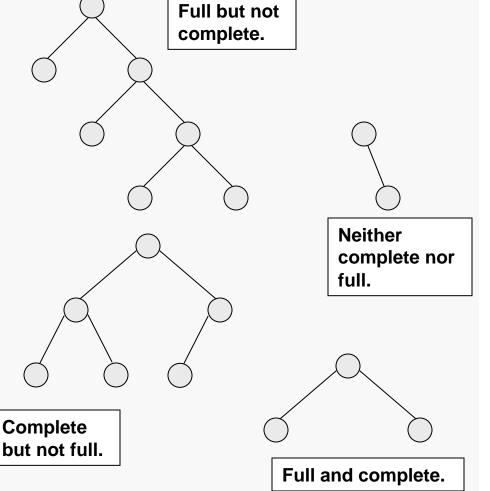
each node is either a leaf or possesses exactly two child

nodes.

<u>Definition</u>: a binary tree T with n

levels is *complete* if all levels except possibly the last are completely full, and the last level has all its

nodes to the left side.



Full Binary Tree Theorem

Let T be a nonempty, full binary tree Then: Theorem:

- If T has I internal nodes, the number of leaves is L = I + 1. (a)
- If T has I internal nodes, the total number of nodes is N = 2I + 1. (b)
- If T has a total of N nodes, the number of internal nodes is I = (N 1)/2. (c)
- If T has a total of N nodes, the number of leaves is L = (N + 1)/2. (d)
- If T has L leaves, the total number of nodes is N = 2L 1. (e)
- If T has L leaves, the number of internal nodes is I = L 1. (f)

Basically, this theorem says that the number of nodes N, the number of leaves L, and the number of internal nodes I are related in such a way that if you know any one of them, you can determine the other two.

<u>proof of (a)</u>: We will use induction on the number of internal nodes, I. Let S be the set of all integers $I \ge 0$ such that if T is a full binary tree with I internal nodes then T has I + 1 leaf nodes.

For the base case, if I = 0 then the tree must consist only of a root node, having no children because the tree is full. Hence there is 1 leaf node, and so $0 \in S$.

Now suppose that for some integer $K \ge 0$, every I from 0 through K is in S. That is, if T is a nonempty binary tree with I internal nodes, where $0 \le I \le K$, then T has I + 1 leaf nodes.

Let T be a full binary tree with K + 1 internal nodes. Then the root of T has two subtrees L and R; suppose L and R have I_L and I_R internal nodes, respectively. Note that neither L nor R can be empty, and that every internal node in L and R must have been an internal node in T, and T had one additional internal node (the root), and so $K + 1 = I_L + I_R + 1$.

Now, by the induction hypothesis, L must have I_L+1 leaves and R must have I_R+1 leaves. Since every leaf in T must also be a leaf in either L or R, T must have I_L+I_R+2 leaves.

Therefore, doing a tiny amount of algebra, T must have K + 2 leaf nodes and so $K + 1 \in S$. Hence by Mathematical Induction, $S = [0, \infty)$.

QED

Theorem: Let T be a binary tree with λ levels. Then the number of leaves is at most $2^{\lambda-1}$.

<u>proof</u>: We will use strong induction on the number of levels, λ . Let S be the set of all integers $\lambda \ge 1$ such that if T is a binary tree with λ levels then T has at most $2^{\lambda-1}$ leaf nodes.

For the base case, if $\lambda = 1$ then the tree must have one node (the root) and it must have no child nodes. Hence there is 1 leaf node (which is $2^{\lambda-1}$ if $\lambda = 1$), and so $1 \in S$.

Now suppose that for some integer $K \ge 1$, all the integers 1 through K are in S. That is, whenever a binary tree has M levels with $M \le K$, it has at most 2^{M-1} leaf nodes.

Let T be a binary tree with K+1 levels. If T has the maximum number of leaves, T consists of a root node and two nonempty subtrees, say S_1 and S_2 . Let S_1 and S_2 have M_1 and M_2 levels, respectively. Since M_1 and M_2 are between 1 and K, each is in S by the inductive assumption. Hence, the number of leaf nodes in S_1 and S_2 are at most 2^{K-1} and 2^{K-1} , respectively. Since all the leaves of T must be leaves of S_1 or of S_2 , the number of leaves in T is at most $2^{K-1} + 2^{K-1}$ which is 2^K . Therefore, K+1 is in S.

Hence by Mathematical Induction, $S = [1, \infty)$.

QED

<u>Theorem</u>: Let T be a binary tree. For every $k \ge 0$, there are no more than 2^k nodes in level k.

<u>Theorem</u>: Let T be a binary tree with λ levels. Then T has no more than $2^{\lambda} - 1$ nodes.

Theorem: Let T be a binary tree with N nodes. Then the number of levels is at least $\lceil \log (N+1) \rceil$.

Theorem: Let T be a binary tree with L leaves. Then the number of levels is at least $\lceil \log L \rceil + 1$.