
CS2984 (Fall 2008)
PROGRAMMING ASSIGNMENT #4

Due Tuesday, December 9 @ 11:00 PM for 150 points
Due Monday, December 8 @ 11:00 PM for 10 point bonus
Initial Schedule due Tuesday, November 18 @ 11:00 PM

Project meetings on Monday, December 1 through Wednesday, December 3

Please note that this assignment is worth more than the others. It is not intended that this
assignment be that much more difficult than the others. Rather, this should be an opportunity to
make up for any past problems.

In this project, you will re-implement the Geographic Information System for storing point data
from Project 2. However, this time the PR Quadtree will reside on disk. A buffer pool (using the
LRU replacement strategy) will mediate access to the disk file, and a memory manager (similar to
the one implemented for Project 1) will decide where to store the PR Quadtree nodes. Note that
the BST from Project 2 will remain unchanged in this project (that is, it will stay in main memory,
you need not convert it to be stored on disk.)

Input and Output:
Your program will be named “Bindisk”, and it will take three command-line arguments. The

first is the name of the command input file. The second is the number of buffers in the buffer
pool, and will be in the range 1–20. The third is the size for a block in the file (which therefore
determines the buffer size as well).

The input for this project will consist of a series of commands (some with associated parameters,
separated by spaces), one command for each line. The commands will be read from the file given in
command line parameter 1, and the output from the command will be written to standard output.
The format and interpretation for the commands will be identical to Project 2, with the following
exceptions.

In addition to listing the nodes of the PR Quadtree, the “debug” command will also list the
following: (1) Block ID’s of the blocks currently contained in the bufferpool in order from most
recently to least least recently used; and (2) a listing of the memory manager’s free blocks, in order
of their occurrence in the freeblock list.

The output for the PR quadtree in the “debug” command will be a little different from that
used in Project 2. An internal node should be represented by parentheses (and) around the
contents of that node. A leaf node should print its contents, then the ”bar” or ”pipe symbol” |.
An empty leaf node should print as its contents an asterisk *. A non-empty leaf node should print
as its contents the records it contains. Each record should be printed as ”X,Y,NAME:” The Project
2 sample data file at a certain point produces the following debug output:
I0,0,Floyd5001,5012,Blacksburg5001,6213,Blacksburg|E5001,8414,Christiansburg|16383,
16383,Virginia_Beach|

In Project 4, that same tree would look like this:
(0,0,Floyd:5001,5012,Blacksburg:5001,6213,Blacksburg:|*|5001,8414,Christiansburg:|
16383,16383,Virginia_Beach:|)

You will need to create and maintain a disk file which the buffer pool is acting as the intermediary
for. The name of this disk file must be “p4bin.dat”. After completing all commands in the input
file, all unwritten blocks in the buffer pool should be written to disk, and the disk file should be
closed, not deleted.

1

Note that “Block ID” simply refers to the block number, starting with 0. Thus, if the block
size is 1024 bytes, then bytes 0-1023 are in Block 0, bytes 1024-2047 are in Block 1, and so on.

Implementation:
The implementation rules for the PR Quadtree from Project 2 are still in place. That is, all

operations that traverse or descend the PR Quadtree structure MUST be implemented recursively,
and the PR Quadtree nodes MUST be implemented with separate classes for the internal nodes
and the leaf nodes, both of which inherit from some base node type.

The PR Quadtree itself will be stored on disk, not in main memory. This is the primary
difference from Project 2. The nodes will be of variable length, and where a node is stored on disk
will be determined by a memory manager. When implementing the PR Quadtree nodes, access to
a node (by calling the node’s “getchild” method) will mean a request to the memory manager to
return the node contents from the memory pool, and creation or alteration of a node will require
writing to the memory pool. From the point of view of the memory manager and the buffer pool,
communications are in the form of variable-length “messages” that must be stored.

The memory manager should follow the same definition as in Project 1. In particular, the
location for placing the next message within the memory pool should be determined using worst
fit; a list of the free blocks may be maintained in main memory, and adjacent free blocks should be
merged together.

Initially, the memory pool (and the file) should have length 0. Whenever a request is made to
the memory manager that it cannot fulfill with existing free blocks, the size of the memory pool
should grow by one (or more) disk blocks to meet the request.

The memory manager will be managing data residing in the memory pool, and this memory
pool will reside on disk, but the memory manager does not actually have direct access to the disk.
All disk access is through the buffer pool. Thus, the flow of control for a node access will be that
the Bintree will request a “message” from the memory manager via a handle, the memory manager
will ask the buffer pool for the data at a physical location, the buffer pool will hand the contents
of the “message” to the memory manager, which will in turn hand the contents of the “message”
back to the Bintree.

The layout of the PR Quadtree node messages sent to the memory manager MUST be as
follows. (Note that, as in Project 1, the memory manager will actually add to the message the
length of the message as stored in the memory pool.) Internal nodes will store 17 bytes: a one-byte
field used to distinguish internal from leaf nodes, followed by four 4-byte fields to store handles for
the four children. Leaf nodes that contain one or more city records will store the following fields: a
one-byte field used to distinguish internal from leaf nodes; a one-byte field to indicate the number
of city records stored; and then a series of city record that each contain two 4-byte fields for the
city x- and y-coordinates, respectively, and a 4-byte handle for the city name. The city name will
be sent to the memory manager as a separate message. This message will contain the length of
the name in the first byte, followed by the characters for the name. The null character at the end
of the city name string should not be included in the message, nor stored on disk. Empty nodes
will be represented by storing in the empty node’s parent a handle value that is recognized by the
node class “getchild” method as representing an empty leaf node (the flyweight). The flyweight
may be actually represented as a physical node on disk, or you may use a special handle value that
is simply recognized as the flywight.

Testing:

2

A sample data file will be posted to the website to help you test your program. This is not the
data file that will be used in grading your program. The test data provided to you will attempt
to exercise the various syntactic elements of the command specifications. It makes no effort to be
comprehensive in terms of testing the data structures required by the program. Thus, while the
test data provided should be useful, you should also do testing on your own test data to ensure
that your program works correctly.

Deliverables:
When structuring the source files of your project (be it in Eclipse as a “Managed Java Project,”

or in another environment), use a flat directory structure; that is, your source files will all be
contained in the project root. Any subdirectories in the project will be ignored. If you used a
makefile to compile your code, or otherwise did something that won’t automatically compile in
Eclipse, be sure to include any necessary files or instructions so that the TAs can compile it.

If submitting through Eclipse, the format of the submitted archive will be managed for you. If
you choose not to develop in Eclipse, you will submit either a ZIP-compressed archive (compatible
with Windows ZIP tools or the Unix zip command) or else a tar’ed and gzip’ed archive. Either
way, your archive should contain all of the source code for the project, along with any files or
instructions necessary to compile the code. If you need to explain any pertinent information to aid
the TA in the grading of your project, you may include an optional “readme” file in your submitted
archive.

You will submit your project through the automated Web-CAT server. Links to the Web-CAT
client and instructions for those students who are not developing in Eclipse are posted at the class
website. If you make multiple submissions, only your last submission will be evaluated.

You are permitted (but not required) to work with a partner on this project. If you choose to
work with a partner, then only one member of the pair will make a submission. Be sure both
names are included in the documentation. Whatever is the final submission from either of the pair
members is what we will grade unless you arrange otherwise with the GTA.

Scheduling:
In addition to the project submission, you are also required to submit an initial project sched-

ule, hold a meeting with the instructor during the designated project meeting days, submit an
intermediate schedule immediately before or after your meeting, and submit a final schedule with
your project submission. You won’t receive direct credit for submitting the schedule as required,
but each instance of failing to submit scheduling information as required will lose 10 points from
the project grade.

Pledge:
Your project submission must include a statement, pledging your conformance to the Honor

Code requirements for this course. Specifically, you must include the following pledge statement
near the beginning of the file containing the function main() in your program. The text of the
pledge will also be posted online.

// On my honor:
//
// - I have not used source code obtained from another student,
// or any other unauthorized source, either modified or unmodified.

3

//
// - All source code and documentation used in my program
// is either my original work, or was derived by me from the source
// code published in the textbook for this course.
//
// - I have not discussed coding details about this project with anyone
// other than my instructor, ACM/UPE tutors or the GTAs assigned to this
// course. I understand that I may discuss the concepts of this program
// with other students, and that another student may help me debug my
// program so long as neither of us writes anything during the discussion
// or modifies any computer file during the discussion. I have violated
// neither the spirit nor letter of this restriction.
//

Programs that do not contain this pledge will not be graded.

4

