1. Suppose that a record is 32 bytes, a block is 1024 bytes (thus, there are 32 records per block), and that working memory is 1MB (there is also additional space available for I/O buffers, program variables, etc.). What is the expected size for the largest file that can be merged using replacement selection followed by a single pass of multiway merge? Explain how you got your answer.

2. Write an algorithm to find the Kth smallest value in an unsorted array of n numbers \(K \leq n \). Your algorithm should require \(\Theta(n) \) time in the average case. Hint: Your algorithm should look similar to Quicksort.

3. Consider the following permutation for the numbers 1 to 6:

 2, 4, 6, 1, 3, 5.

 Analyze what will happen if this permutation is used by an implementation of pseudo-random probing on a hash table of size seven. Will this permutation solve the problem of primary clustering? What does this say about selecting a permutation for use when implementing pseudo-random probing?

4. Show the result of inserting the values 1, 2, 3, 4, 5, and 6 (in that order) into the B+-tree of Figure 10.17 in the textbook.

5. Assume that you have a B+-tree whose internal nodes can store up to 100 children and whose leaf nodes can store up to 15 records. What are the minimum and maximum number of records that can be stored by the B+-tree for 1, 2, 3, 4, and 5 levels?