Final Exam Coverage

Summer II 2003
JP Vergara

Time and Space Complexity

• Time Complexity
 – Asymptotic assessment
 O(1), O(log n), O(n), ...
 – Data structure operations
 – Algorithms
• Space Complexity
 – Space overhead to represent structure
 – Tradeoffs across structures/implementations
• Best-case, worst-case, average-case analysis

Linear and Tree Structures

• Lists and arrays as they are used in more complex data structures
• Binary search, heaps as used in later topics (sorting, indexing, etc.)
• Study:
 – Huffman coding trees
 – Traversals (preorder, post order, in-order)
 – Sequential representation for binary trees

Sorting

• O(n^2) algorithms: insertion, bubble, selection
• O(n log n) algorithms: quick, merge, heap
• Lower bound analysis for comp-based sorting
• O(n) algorithms: bucket/bin, radix
• Question types: step-by-step simulation, variants, comparison between algorithms, pros/cons
 * Shell Sort not covered in exam

Disk Access

• Computing Disk Read Time
 – Given disk, track, sector, cluster info compute the time it takes to read data from a file
• Buffer Pools
 – Message passing versus direct access (see ADTs)
 – Replacement policies (FIFO, LRU, LFU)

Hashing

• See handout
• Open hashing: slots are bins for lists
• Closed hashing: table contains records
• Question types: determine home position, probe sequence, or landing slot; effect of changing hash function, probe function, and other parameters
• Final project and bucket hashing
Indexing

- Linear index
- Regular binary search tree index
- 2-3 Trees / B-Trees
- B+ Trees
- Question types: simulation of operations, differences, pros/cons

Graphs

- Notation and definitions: graph, directed graph, vertices, edges, paths, cycles
- Graph representation
 - Adjacency matrix
 - Adjacency list
- Graph Traversals
 - DFS and BFS

Topics that will not be covered in Final Exam

- Shell Sort
- External Sorting
- Self-organizing lists
- Graph algorithms that we did not cover in class