
Virtual Memory 1

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Cache Memory and Performance

Many of the following slides are taken with permission from

Complete Powerpoint Lecture Notes for

Computer Systems: A Programmer's Perspective (CS:APP)

Randal E. Bryant and David R. O'Hallaron

http://csapp.cs.cmu.edu/public/lectures.html

The book is used explicitly in CS 2505 and CS 3214 and as a reference in CS

2506.

http://www.cs.cmu.edu/~bryant
http://www.cs.cmu.edu/~droh
http://csapp.cs.cmu.edu/public/lectures.html

Virtual Memory 2

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Physical Memory Addressing

Used today in “simple” systems like embedded microcontrollers in devices like

cars, elevators, and digital picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Running
program creates
physical address

(PA)

Data word

8: ...

4

Virtual Memory 3

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Shortcomings

Early systems used physical addressing

- each program kept its entire memory space in DRAM

- limited the number of programs that could be "active" at once

- limited absolute size of program's memory space to size of DRAM

- provided no natural support for address protection

Critical observations: during any interval of time that a program is being executed

- the program will (most likely) access only a small part of its instructions

- the program will (most likely) access only a small part of its data

Virtual Memory 4

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Virtual Memory

Use main memory as a “cache” for secondary (disk) storage
– Managed jointly by CPU hardware and the operating system (OS)

Programs share main memory (DRAM)
– Each gets a private virtual address space holding its code and data

– DRAM holds its frequently-used code and data

– Protected from other programs

CPU and OS translate virtual addresses to physical addresses
– VM “block” is called a page

– VM translation “miss” is called a page fault

Virtual Memory 5

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Virtual Memory

Used in all modern servers, laptops, and smart phones

One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

VA is then
translated to

physical address
(PA)

8: ...

CPU

Running program
produces

virtual address
(VA)

CPU Chip

44100

Virtual Memory 6

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Virtual Memory

Aside: when you use gdb, you are seeing virtual addresses, not physical

addresses:

198 csvEntry* newEntry = createCSVEntry(pCSVData);

(gdb) n

203 int32_t foundIdx = findCSVEntry(pList, newEntry);

(gdb) p newEntry

$6 = (csvEntry *) 0x605380

(gdb) p *newEntry

$7 = {CRN = 0x605450 "12958",

ID = 0x605490 "000000000",

Name = 0x6054b0 "Hokie, James Robert",

PID = 0x6054d0 "joebobhokie",

PPID = 0x6054f0 "",

totalScore = 88,

nScores = 4,

Scores = 0x6053c0}

Virtual Memory 7

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Process Virtual Memory Image

OS maintains:

- structure of each process’s

address space,

- which addresses are valid,

- what do they refer to,

- even those that aren’t in

main memory currently

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp

(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Virtual Memory 8

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Paging to/from Disk

Idea: hold only those data in physical memory that are actually accessed by a

process

Maintain map for each process

{ virtual addresses }  { physical addresses }  { disk addresses }

OS manages mapping, decides which virtual addresses map to physical (if

allocated) and which to disk

Demand paging: bring data in from disk lazily, on first access

– Unbeknownst to application

Disk addresses include:

– Executable .text, initialized data

– Swap space (typically lazily allocated)

– Memory-mapped (mmap’d) files (see example)

Virtual Memory 9

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Process Virtual Memory Image

"Virtual" space exists on

secondary storage

Virtual space is divided into

fixed-size "pages"

Virtual pages are copied into

DRAM as needed

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp

(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Virtual Memory 10

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

VM as a Tool for Caching

Conceptually, virtual memory is an array of N contiguous bytes stored on disk.

The contents of the array on disk are cached in physical memory (DRAM cache)

– these cache blocks are called pages (size is P = 2p bytes)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0

VP 1

VP 2n-p-1

Virtual memory

Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

PP 0

PP 1

Empty

Cached

0

N-1

M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

Virtual Memory 11

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

DRAM Cache Organization

DRAM cache organization driven by the enormous miss penalty

Consequences

– DRAM is about 10x slower than SRAM

– Disk is about 10,000x slower than DRAM

– Large page (block) size: typically 4 KB, sometimes 4 MB

– Fully associative

 Any VP can be placed in any PP

 Requires a “large” mapping function – different from cache memories

– Highly sophisticated, expensive replacement algorithms

 Too complicated and open-ended to be implemented in hardware

– Write-back rather than write-through

Virtual Memory 12

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Page Table Enables Address Mapping

Page table: an array of page table entries (PTEs) that maps virtual pages to

physical pages.

Per-process kernel data structure in DRAM

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual Memory 13

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Page Hit

Page hit: reference to VM word that is in physical memory (DRAM cache hit)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Virtual Memory 14

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Page Fault

Page fault: reference to VM word that is not in physical memory

(DRAM cache miss)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Virtual Memory 15

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Handling Page Fault

Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Virtual Memory 16

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Handling Page Fault

Page miss causes page fault (an exception)

Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Virtual Memory 17

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Handling Page Fault

Page miss causes page fault (an exception)

Page fault handler selects a victim to be evicted

Missed VM page (here VP 3) is copied from disk to PM (here PP 3)

Page table is updated

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Virtual Memory 18

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Handling Page Fault

Page miss causes page fault (an exception)

. . .

Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Key point: Waiting until the miss to copy the page to DRAM
is known as demand paging

Virtual Memory 19

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Allocating Pages

Allocating a new page (VP 5) of virtual memory.

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

VP 5

Virtual Memory 20

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Locality to the Rescue Again!

Virtual memory seems terribly inefficient, but it works because of locality

At any point in time, programs tend to access a set of active virtual pages called
the working set

– Programs with better temporal locality will have smaller working sets

If (working set size < main memory size)

– Good performance for one process after compulsory misses

If (SUM(working set sizes) > main memory size)

– Thrashing: Performance meltdown where pages are swapped (copied) in and out
continuously

Virtual Memory 21

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

VM Address Translation

Virtual Address Space

– V = {0, 1, …, N–1}

Physical Address Space

– P = {0, 1, …, M–1}

Address Translation

– MAP: V  P U {}

– For virtual address a:

 MAP(a) = a’ if data at virtual address a is at physical address a’ in P

 MAP(a) =  if data at virtual address a is not in physical memory

– Either invalid or stored on disk

Virtual Memory 22

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Summary of Address Translation Symbols

Basic Parameters

– N = 2n : Number of addresses in virtual address space

– M = 2m : Number of addresses in physical address space

– P = 2p : Page size (bytes)

Components of the virtual address (VA)

– TLBI: TLB index

– TLBT: TLB tag

– VPO: Virtual page offset

– VPN: Virtual page number

Components of the physical address (PA)

– PPO: Physical page offset (same as VPO)

– PPN: Physical page number

Virtual Memory 23

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Address Translation With a Page Table

Valid Physical page number (PPN)

Page table

Page table
base register

(PTBR)

Physical page table
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

Virtual page number (VPN) Virtual page offset (VPO)

Virtual address
0p-1pn-1

Physical page number (PPN) Physical page offset (PPO)

Physical address

0p-1pm-1

Valid bit = 1

Virtual Memory 24

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip
PTEA

PTE
1

2

3

4

5

Virtual Memory 25

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Address Translation: Page Fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

Virtual Memory 26

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Integrating VM and Cache

VA
CPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA

miss

PTEA

hit

PA

hit

Data

PTE

L1

cache

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Virtual Memory 27

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Speeding up Translation with a TLB

If page table entries (PTEs) are cached in L1 like any other memory word

– PTEs may be evicted by other data references

– PTE hit still requires a small L1 delay

Solution: Translation Lookaside Buffer (TLB)

– Small set-associative hardware cache in MMU

– Maps virtual page numbers to physical page numbers

– Contains complete page table entries for small number of pages

Virtual Memory 28

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Accessing the TLB

MMU uses the VPN portion of the virtual address to access the TLB:

TLB tag (TLBT) TLB index (TLBI)

0p-1pn-1

VPO

VPN

p+t-1p+t

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1

T = 2t sets

TLBI selects the set

TLBT matches tag of
line within set

Virtual Memory 29

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

TLB Hit

MMU
Cache/
Memory

CPU

CPU Chip

VA

1

PA

4

Data

5

A TLB hit eliminates a cache/memory access

TLB

2

VPN

PTE

3

Virtual Memory 30

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

TLB Miss

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an additional cache/memory access (to get the PTE)

Fortunately, TLB misses are rare. Why?

Virtual Memory 31

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

VM as a Tool for Memory Protection

Extend PTEs with permission bits

MMU checks these bits on each access

Physical
Address Space

PP 2

PP 4

PP 6

PP 8

PP 9

PP 11

Process j: AddressREAD WRITE

PP 9Yes No

PP 6Yes Yes

PP 11Yes Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

EXEC

Yes

Yes

Yes

Process i: AddressREAD WRITE

PP 6Yes No

PP 4Yes Yes

PP 2Yes

VP 0:

VP 1:

VP 2: Yes

SUP

No

No

Yes

EXEC

Yes

Yes

No

Virtual Memory 32

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Examples of 2-Level TLB Organization

Intel Nehalem AMD Opteron X4

Virtual addr 48 bits 48 bits

Physical addr 44 bits 48 bits

Page size 4KB, 2/4MB 4KB, 2/4MB

L1 TLB

(per core)

L1 I-TLB: 128 entries for small pages, 7

per thread (2×) for large pages

L1 D-TLB: 64 entries for small pages, 32

for large pages

Both 4-way, LRU replacement

L1 I-TLB: 48 entries

L1 D-TLB: 48 entries

Both fully associative, LRU

replacement

L2 TLB

(per core)

Single L2 TLB: 512 entries

4-way, LRU replacement

L2 I-TLB: 512 entries

L2 D-TLB: 512 entries

Both 4-way, round-robin LRU

TLB misses Handled in hardware Handled in hardware

Virtual Memory 33

Computer Organization IICS@VT ©2005-2020 CS:APP & WD McQuain

Summary

Programmer’s view of virtual memory

– Each process has its own private linear address space

– Cannot be corrupted by other processes

System view of virtual memory

– Uses memory efficiently by caching virtual memory pages

 Efficient only because of locality

– Simplifies memory management and programming

– Simplifies protection by providing a convenient interpositioning point to check

permissions

