
Optimization

Computer Organization II

1

CS@VT ©2005-2020 WD McQuain

CS 3114

Many of the following slides are taken with permission from

Complete Powerpoint Lecture Notes for

Computer Systems: A Programmer's Perspective (CS:APP)

Randal E. Bryant and David R. O'Hallaron

http://csapp.cs.cmu.edu/public/lectures.html

The book is used explicitly in CS 2505 and CS 3214 and as a reference in CS

2506.

Many other slides were based on notes written by Dr Godmar Back for CS 3214.

http://www.cs.cmu.edu/~bryant
http://www.cs.cmu.edu/~droh
http://csapp.cs.cmu.edu/public/lectures.html

Optimization

Computer Organization II

2

CS@VT ©2005-2020 WD McQuain

Asymptotic Complexity

“Big-O” O(…), Θ(…)

– Describes asymptotic behavior of time or space cost function of an
algorithm as input size grows

– Subject of complexity analysis (CS 3114)

– Determine if a problem is tractable or not

Example:

– Quicksort – O(n log n) average case

– Bubble Sort – O(n^2) average case

 Actual cost may be C1 * N^2 + C2 * N + C3

These constants can matter and optimization can reduce them

– Determine how big of a problem a tractable algorithm can handle in a
concrete implementation on a given machine

Optimization

Computer Organization II

3

CS@VT ©2005-2020 WD McQuain

Roles of Programmer vs Compiler

High-Level

Low-Level

C
o
m

p
ile

r

P
ro

g
ra

m
m

e
r

Optimizing Compiler

– Applies
transformations that
preserve semantics,
but reduce amount
of, or time spent in
computations

– Provides efficient
mapping of code to
machine:

 Selects and
orders code

 Performs register
allocation

– Usually consists of
multiple stages

Programmer:

– Choice of

algorithm, Big-O

– Manual

application of

some

optimizations

– Choice of program

structure that’s

amenable to

optimization

– Avoidance of

“optimization

blockers”

Optimization

Computer Organization II

4

CS@VT ©2005-2020 WD McQuain

Controlling Optimization with gcc

-O0 (“O zero”)
– This is the default: minimal optimizations

-O1
– Apply optimizations that can be done quickly

-O2
– Apply more expensive optimizations. That’s a reasonable default for running

production code. Typical ratio between –O2 and –O0 is 5-20.

-O3
– Apply even more expensive optimizations

-Os
– Optimize for code size

See ‘info gcc’ for list which optimizations are enabled when; note that –f
switches may enable additional optimizations that are not included in –O

Note: ability to debug code symbolically under gdb decreases with
optimization level; usually use –O0 –g or –O1 –g or –ggdb3

Optimization

Computer Organization II

5

CS@VT ©2005-2020 WD McQuain

Limitations of Optimizing Compilers

Fundamentally, must emit code that implements specified semantics

under all conditions

– Can’t apply optimizations even if they would only change behavior in

corner case a programmer may not think of

– Due to memory aliasing

– Due to unseen procedure side-effects

Do not see beyond current compilation unit

Intraprocedural analysis typically more extensive (since cheaper) than

interprocedural analysis

Usually base decisions on static information

Optimization

Computer Organization II

6

CS@VT ©2005-2020 WD McQuain

Types of Optimizations

Copy Propagation

Code Motion

Strength Reduction

Common Subexpression Elimination

Eliminating Memory Accesses

– Through use of registers

Inlining

Optimization

Computer Organization II

7

CS@VT ©2005-2020 WD McQuain

Copy Propagation

int arith1(int x, int y, int z)

{

int x_plus_y = x + y;

int x_minus_y = x - y;

int x_plus_z = x + z;

int x_minus_z = x - z;

int y_plus_z = y + z;

int y_minus_z = y - z;

int xy_prod = x_plus_y * x_minus_y;

int xz_prod = x_plus_z * x_minus_z;

int yz_prod = y_plus_z * y_minus_z;

return xy_prod + xz_prod + yz_prod;

}

int arith2(int x, int y, int z)

{

return (x + y) * (x - y)

+ (x + z) * (x - z)

+ (y + z) * (y - z);

}

Which produces faster code?

Optimization

Computer Organization II

8

CS@VT ©2005-2020 WD McQuain

Copy Propagation

arith1:

leal (%rdx,%rdi), %ecx

movl %edi, %eax

subl %edx, %eax

imull %ecx, %eax

movl %esi, %ecx

subl %edx, %ecx

addl %esi, %edx

imull %edx, %ecx

movl %edi, %edx

subl %esi, %edx

addl %edi, %esi

imull %esi, %edx

addl %ecx, %eax

addl %edx, %eax

ret

arith2:

leal (%rdx,%rdi), %ecx

movl %edi, %eax

subl %edx, %eax

imull %ecx, %eax

movl %esi, %ecx

subl %edx, %ecx

addl %esi, %edx

imull %edx, %ecx

movl %edi, %edx

subl %esi, %edx

addl %edi, %esi

imull %esi, %edx

addl %ecx, %eax

addl %edx, %eax

ret

Optimization

Computer Organization II

9

CS@VT ©2005-2020 WD McQuain

Constant Propagation

#include <stdio.h>

int sum(int a[], int n)

{

int i, s = 0;

for (i = 0; i < n; i++)

s += a[i];

return s;

}

int main()

{

int v[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int s = sum(v, 10);

printf("Sum is %d\n", s);

}

.LC0:

.string "Sum is %d\n"

main:

…

movl $55, 4(%esp)

movl $.LC0, (%esp)

call printf

Optimization

Computer Organization II

10

CS@VT ©2005-2020 WD McQuain

Code Motion

Do not repeat computations if result is known

Usually out of loops (“code hoisting”)

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

a[n*i + j] = b[j];

for (i = 0; i < n; i++) {

int ni = n*i;

for (j = 0; j < n; j++)

a[ni + j] = b[j];

}

Optimization

Computer Organization II

11

CS@VT ©2005-2020 WD McQuain

Strength Reduction

Substitute lower cost operation for more expensive one

– E.g., replace 48*x with (x << 6) – (x << 4)

– Often machine dependent

Optimization

Computer Organization II

12

CS@VT ©2005-2020 WD McQuain

Common Subexpression Elimination

Reuse already computed expressions

/* Sum neighbors of i,j */

up = val[(i-1)*n + j];

down = val[(i+1)*n + j];

left = val[i*n + j-1];

right = val[i*n + j+1];

sum = up + down + left + right;

int inj = i*n + j;

up = val[inj - n];

down = val[inj + n];

left = val[inj - 1];

right = val[inj + 1];

sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n

1 multiplication: i*n

Optimization

Computer Organization II

13

CS@VT ©2005-2020 WD McQuain

Eliminating Memory Accesses, Take 1

Register accesses are faster than memory accesses

int sp1(int *px, int *py)

{

int sum = *px * *px + *py * *py;

int diff = *px * *px - *py * *py;

return sum * diff;

}

sp1:

movl (%rdi), %ecx # eax = *px

movl (%rsi), %edx # edx = *py

imull %ecx, %ecx

imull %edx, %edx

leal (%rcx,%rdx), %eax # no access

subl %edx, %ecx

imull %ecx, %eax

ret

8 pointer

dereferences

2 memory accesses

Number of memory accesses at runtime not determined by how often

pointer dereferences occur in source code

Optimization

Computer Organization II

14

CS@VT ©2005-2020 WD McQuain

Eliminating Memory Accesses, Take 2

void sp2(int *px, int *py,

int *psum, int *pprod) {

*psum = *px + *py;

*pprod = *px * *py;

}

sp2:

movl (%rdi), %eax # eax = *px

addl (%rsi), %eax # eax = eax + *py

movl %eax, (%rdx) # *psum = eax

movl (%rdi), %eax # eax = *px

imull (%rsi), %eax # eax = eax * *py

movl %eax, (%rcx) # *pprod = eax

ret

6 pointer dereferences

6 memory accesses

… why were *px and *py each loaded twice?

Optimization

Computer Organization II

15

CS@VT ©2005-2020 WD McQuain

Optimization Blocker: Pointer Aliasing

The compiler cannot assume that the value of *px does not change between

void sp2(int *px, int *py,

int *psum, int *pprod) {

*psum = *px + *py;

*pprod = *px * *py;

}

. . .

*psum = *px + *py;

*pprod = *px * *py;

}

and

How could that happen?

What if px and psum pointed to the same variable in the caller's code?

Optimization

Computer Organization II

16

CS@VT ©2005-2020 WD McQuain

Optimization Blocker: Pointer Aliasing

Suppose the compiler tried to eliminate memory accesses by doing this:

void sp2(int *px, int *py,

int *psum, int *pprod) {

*psum = *px + *py;

*pprod = *px * *py;

}

sp2:

movl (%rdi), %edi # edi = *px

movl (%rsi), %eax # eax = *py

leal (%rdi,%rax), %esi # esi = *px + *py

imull %edi, %eax # edi = *px * *py

movl %esi, (%rdx) # *psum = esi

movl %eax, (%rcx)

ret

6 pointer dereferences

4 memory

accesses

Optimization

Computer Organization II

17

CS@VT ©2005-2020 WD McQuain

Erroneous Optimization

The compiler translation shown on the previous slide is equivalent to this:

void sp2(int *px, int *py, int *psum, int *pprod) {

int xtmp = *px;

int ytmp = *py;

*psum = *px + *py;

*pprod = *px * *py;

}

. . .

int X = 10;

int Y = 20;

sp2(&X, &Y, &X, &Y);

. . .

}

Suppose the caller wrote this:

Code above:

X = 10 and Y = 20

Original translation:

X = 30 and Y = 300

Which is correct? Which was intended?

Optimization

Computer Organization II

18

CS@VT ©2005-2020 WD McQuain

Limitations of Optimizing Compilers

Fundamentally, must emit code that implements specified semantics

under all conditions

– Can’t apply optimizations even if they would only change behavior in

corner case a programmer may not think of

– Due to memory aliasing

– Due to unseen procedure side-effects

Do not see beyond current compilation unit

Intraprocedural analysis typically more extensive (since cheaper) than

interprocedural analysis

Usually base decisions on static information

Optimization

Computer Organization II

19

CS@VT ©2005-2020 WD McQuain

Erroneous Optimization

This code:

void sp2(int *px, int *py, int *psum, int *pprod) {

int xtmp = *px;

int ytmp = *py;

*psum = *px + *py;

*pprod = *px * *py;

}

… is NOT logically equivalent to this code:

void sp2(int *px, int *py, int *psum, int *pprod) {

*psum = *px + *py;

*pprod = *px * *py;

}

