CS 3114 Optimization 1

Many of the following slides are taken with permission from

Complete Powerpoint Lecture Notes for
Computer Systems: A Programmer's Perspective (CS:APP)

and

The book is used explicitly in CS 2505 and CS 3214 and as a reference in CS
2506.

Many other slides were based on notes written by Dr Godmar Back for CS 3214.

CS@VT Computer Organization Il ©2005-2020 WD McQuain

http://www.cs.cmu.edu/~bryant
http://www.cs.cmu.edu/~droh
http://csapp.cs.cmu.edu/public/lectures.html

Asymptotic Complexity Optimization 2

“‘Big-O” O(...), O(...)
Describes asymptotic behavior of time or space cost function of an
algorithm as input size grows
Subject of complexity analysis (CS 3114)
Determine if a problem is tractable or not

Example:
Quicksort — O(n log n) average case

Bubble Sort — O(n"2) average case
Actual cost may be C; * N*2 + C, * N + C,

These constants can matter and optimization can reduce them

Determine how big of a problem a tractable algorithm can handle in a
concrete implementation on a given machine

CS@VT Computer Organization Il ©2005-2020 WD McQuain

Roles of Programmer vs Compiler

Programmer:

CS@VT

Choice of
algorithm, Big-O
Manual
application of
some
optimizations
Choice of program
structure that’s
amenable to
optimization
Avoidance of
“optimization
blockers”

High-Level

Programmer

Compiler

Low-Level

Computer Organization Il

Optimization 3

Optimizing Compiler

Applies
transformations that
preserve semantics,
but reduce amount
of, or time spent in
computations

Provides efficient
mapping of code to
machine:

Selects and
orders code

Performs register
allocation

Usually consists of
multiple stages

©2005-2020 WD McQuain

Controlling Optimization with gcc Optimization 4

-0O0 (“O zero”)
This is the default: minimal optimizations

-O1
Apply optimizations that can be done quickly
-02
Apply more expensive optimizations. That’s a reasonable default for running
production code. Typical ratio between —O2 and —O0 is 5-20.
-0O3
Apply even more expensive optimizations
-Os

Optimize for code size

See ‘info gcc’ for list which optimizations are enabled when; note that —f
switches may enable additional optimizations that are not included in —O

Note: ability to debug code symbolically under gdb decreases with
optimization level; usually use —O0 —g or —O1 —g or —ggdb3

CS@VT Computer Organization Il ©2005-2020 WD McQuain

Limitations of Optimizing Compilers Optimization 5

Fundamentally, must emit code that implements specified semantics
under all conditions

Can'’t apply optimizations even if they would only change behavior in
corner case a programmer may not think of

Due to memory aliasing
Due to unseen procedure side-effects

Do not see beyond current compilation unit

Intraprocedural analysis typically more extensive (since cheaper) than
Interprocedural analysis

Usually base decisions on static information

CS@VT Computer Organization Il ©2005-2020 WD McQuain

Types of Optimizations Optimization 6

Copy Propagation

Code Motion

Strength Reduction

Common Subexpression Elimination

Eliminating Memory Accesses
Through use of registers

Inlining

CS@VT Computer Organization Il ©2005-2020 WD McQuain

B Copy Propagation Optimization 7

int arithl (int x, int y, int z)
{

int x plus vy = x + y;

int x minus y = x - y;

int x plus z = x + z;

int x minus z = x - z;
int y plus z =y + z;
int y minus z =y - z;

int xy prod = x plus y * x minus y;
int xz prod = x plus z * x minus_z;
int yz prod = y plus z * y minus_z;

return xy prod + xz prod + yz prod;

' 2
int arith2(int x, int y, int z) Which produces faster code”

{
return (x + y) * (x - y)
+ (x + z) * (x - z2)
+ (y +2z) * (y - 2);

CS@VT Computer Organization Il ©2005-2020 WD McQuain

B Copy Propagation

Optimization 8

arithl:

leal srdx, %rdi) , %ecx

movl $edi, %eax

subl Sedx, %eax :

imull secx, %eax arith2:

movl %esi, %ecx ~aald $rdx, %rdi) , %ecx

=555l sedx, %ecx movl %$edi, %eax

addl Yesi, %edx subl %edx, %eax

imull sedx, %ecx imull Tecx, %eax

sl sedi, %edx movl %esi, %ecx

subl Sesi, %edx subl $edx, %ecx

addl %edi, %esi addl %esi, %edx

imull sesi, %edx imull Sedx, %ecx

addl Secx, %eax movl tedi, %edx

addl %edx, %eax subl %esi, %edx

ret addl sedi, %esi
imull $esi, %edx
addl $ecx, %eax
addl $edx, %eax
ret

CS@VT Computer Organization II ©2005-2020 WD McQuain

I Constant Propagation Optimization 9

#include <stdio.h>

int sum(int a[], int n)

{ .LCO:
int i, s = 0; .string "Sum is %d\n"
for (i = 0; i < n; i++) |main:
s += a[i];
return s; movl $55, 4(%esp)
} movl $.LCO, (%esp)
call printf
int main()
{
int v[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int s = sum(v, 10);
printf ("Sum is %d\n", s);
}

CS@VT Computer Organization Il ©2005-2020 WD McQuain

™ Code Motion Optimization 10

Do not repeat computations if result is known
Usually out of loops (“code hoisting”)

for (i = 0; i < n; i++) {
int ni = n*i;

for (1 = 0; 1 < n; i++)] i i
ﬁ — ° °
for (j = 0; j < n; jt++) for (? 9’ 2 < i Jt+)
aln*i + j] = b[jl; \ alat + 31 =503

CS@VT Computer Organization Il ©2005-2020 WD McQuain

B Strength Reduction Optimization 11
Substitute lower cost operation for more expensive one

E.g., replace 48*x with (X << 6) — (x << 4)
Often machine dependent

CS@VT Computer Organization Il ©2005-2020 WD McQuain

= Common Subexpression Elimination

Reuse already computed expressions

up =
down =
left =

right =

/* Sum neighbors of i,j */
val[(i-1)*n + j];
val[(i+1)*n + j];
val[i*n
val[i*n
sum = up + down

+ j-11;
+ Jj+11]1;
+ left + right;

int inj
up =
down
left =

right =

= i*n +
val[inj
val[inj
val[inj
val[inj

sum = up + down

Optimization 12

3 multiplications: i*n, (i-1)*n, (i+1)*n

J; 1 multiplication: i*n

- n];
+ nj;
- 1];
+ 1],
+ left + right;

CS@VT

Computer Organization Il

©2005-2020 WD McQuain

I Eliminating Memory Accesses, Take 1

Register accesses are faster than memory accesses

int spl(int *px, int *py)

{
int sum = *px * *px + *py * *py;
int diff = *px * *px - *py * *py;
return sum * diff;

}

spl:

movl $rdi) , %ecx # eax = *px
movl ($rsi) , %edx # edx = *py
imull %ecx, %ecx

imull %edx, %edx

leal %$rcx,%rdx), %eax # no access
subl %$edx, %ecx

imull %ecx, %eax

ret

Optimization 13

8 pointer
dereferences

2 memory accesses

Number of memory accesses at runtime not determined by how often

pointer dereferences occur in source code

CS@VvT Computer Organization Il

©2005-2020 WD McQuain

™ Eliminating Memory Accesses, Take 2 Optimization 14

void sp2(int *px, int *py, .
S Cimerm, S Sizmaacl) 6 pointer dereferences
*psum = *px + *py;
*pprod = *px * *py;
}

sp2:
. _ p
movl $rdi) , %Seax # eax = *px {memory sldbeesies
addl $rsi), %eax # eax = eax + *py <€
movl %eax, (%rdx) # *psum = eax
movl %$rdi) , %eax # eax = *px €«
imull $rsi) , %eax # eax = eax * *py
movl %eax, (%rcx) # *pprod = eax N
ret

... why were *px and *py each loaded twice?

CS@VT Computer Organization Il ©2005-2020 WD McQuain

I Optimization Blocker: Pointer Aliasing Optimization 15

void sp2(int *px, int *py,
int *psum, int *pprod) ({

*psum = *px + *py;
*pprod = *px * *py;
}

The compiler cannot assume that the value of *px does not change between

— —

and *psum = *px + *py;

*ppro;\:‘*px * *py;

How could that happen?

What if px and psum pointed to the same variable in the caller's code?

CS@VT Computer Organization Il ©2005-2020 WD McQuain

B Optimization Blocker: Pointer Aliasing

*psum = *px + *py;
*pprod = *px * *py;
}

void sp2(int *px, int *py,
int *psum, int *pprod) ({

Optimization 16

6 pointer dereferences

Suppose the compiler tried to eliminate memory accesses by doing this:

sp2:

movl $rdi) , %edi
movl (%rsi), %eax
leal $rdi, $rax),
imull %edi, %eax
movl %esi, (%rdx)
movl %eax, (%rcx)
ret

$esi

3H* H= H H HF

edi
eax
esi
edi

*psum

4 memory
*px accesses
*py
*px + *py
*Px * *Py
= esl1l

CS@VvT Computer Organization Il

©2005-2020 WD McQuain

™ Erroneous Optimization Optimization 17

The compiler translation shown on the previous slide is equivalent to this:

void sp2(int *px, int *py, int *psum, int *pprod) ({

int xtmp *px;
int ytmp = *py;

*psum = *px + *py;
*pprod = *px * *py;

}

Suppose the caller wrote this:

Co Code above:
int X = 10; X=10and Y =20

int Y 20;

Original translation:

sp2 (&X, &Y, &X, &Y); X =30 and Y = 300

Which is correct? Which was intended?

CS@VT Computer Organization Il ©2005-2020 WD McQuain

Limitations of Optimizing Compilers Optimization 18

Fundamentally, must emit code that implements specified semantics
under all conditions

Can'’t apply optimizations even if they would only change behavior in
corner case a programmer may not think of

Due to memory aliasing
Due to unseen procedure side-effects

Do not see beyond current compilation unit

Intraprocedural analysis typically more extensive (since cheaper) than
Interprocedural analysis

Usually base decisions on static information

CS@VT Computer Organization Il ©2005-2020 WD McQuain

™ Erroneous Optimization Optimization 19

This code:

void sp2(int *px, int *py, int *psum, int *pprod) ({

int xtmp *px;
int ytmp = *py;

*psum = *px + *py;
*pprod = *px * *py;
}

... 1Is NOT logically equivalent to this code:

void sp2(int *px, int *py, int *psum, int *pprod) {

*psum = *px + *py;
*pprod = *px * *py;

CS@VT Computer Organization Il ©2005-2020 WD McQuain

