CS 3114 Optimization 1

Many of the following slides are taken with permission from

Complete Powerpoint Lecture Notes for
Computer Systems: A Programmer's Perspective (CS:APP)

and

The book is used explicitly in CS 2505 and CS 3214 and as a reference in CS
2506.

Many other slides were based on notes written by Dr Godmar Back for CS 3214.
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http://www.cs.cmu.edu/~bryant
http://www.cs.cmu.edu/~droh
http://csapp.cs.cmu.edu/public/lectures.html

Asymptotic Complexity Optimization 2

“‘Big-O” O(...), O(...)
Describes asymptotic behavior of time or space cost function of an
algorithm as input size grows
Subject of complexity analysis (CS 3114)
Determine if a problem is tractable or not

Example:
Quicksort — O(n log n) average case

Bubble Sort — O(n"2) average case
Actual cost may be C; * N*2 + C, * N + C,

These constants can matter and optimization can reduce them

Determine how big of a problem a tractable algorithm can handle in a
concrete implementation on a given machine
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Roles of Programmer vs Compiler

Programmer:

CS@VT

Choice of
algorithm, Big-O
Manual
application of
some
optimizations
Choice of program
structure that’s
amenable to
optimization
Avoidance of
“optimization
blockers”

High-Level

Programmer

Compiler

Low-Level

Computer Organization Il

Optimization 3

Optimizing Compiler

Applies
transformations that
preserve semantics,
but reduce amount
of, or time spent in
computations

Provides efficient
mapping of code to
machine:

Selects and
orders code

Performs register
allocation

Usually consists of
multiple stages
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Controlling Optimization with gcc Optimization 4

-0O0 (“O zero”)
This is the default: minimal optimizations

-O1
Apply optimizations that can be done quickly
-02
Apply more expensive optimizations. That’s a reasonable default for running
production code. Typical ratio between —O2 and —O0 is 5-20.
-0O3
Apply even more expensive optimizations
-Os

Optimize for code size

See ‘info gcc’ for list which optimizations are enabled when; note that —f
switches may enable additional optimizations that are not included in —O

Note: ability to debug code symbolically under gdb decreases with
optimization level; usually use —O0 —g or —O1 —g or —ggdb3
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Limitations of Optimizing Compilers Optimization 5

Fundamentally, must emit code that implements specified semantics
under all conditions

Can'’t apply optimizations even if they would only change behavior in
corner case a programmer may not think of

Due to memory aliasing
Due to unseen procedure side-effects

Do not see beyond current compilation unit

Intraprocedural analysis typically more extensive (since cheaper) than
Interprocedural analysis

Usually base decisions on static information
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Types of Optimizations Optimization 6

Copy Propagation

Code Motion

Strength Reduction

Common Subexpression Elimination

Eliminating Memory Accesses
Through use of registers

Inlining
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B Copy Propagation Optimization 7

int arithl (int x, int y, int z)
{

int x plus vy = x + y;

int x minus y = x - y;

int x plus z = x + z;

int x minus z = x - z;
int y plus z =y + z;
int y minus z =y - z;

int xy prod = x plus y * x minus y;
int xz prod = x plus z * x minus_z;
int yz prod = y plus z * y minus_z;

return xy prod + xz prod + yz prod;

' 2
int arith2(int x, int y, int z) Which produces faster code”

{
return (x + y) * (x - y)
+ (x + z) * (x - z2)
+ (y +2z) * (y - 2);
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B Copy Propagation

Optimization 8

arithl:

leal srdx, %rdi) , %ecx

movl $edi, %eax

subl Sedx, %eax :

imull secx, %eax arith2:

movl %esi, %ecx ~aald $rdx, %rdi) , %ecx

=555l sedx, %ecx movl %$edi, %eax

addl Yesi, %edx subl %edx, %eax

imull sedx, %ecx imull Tecx, %eax

sl sedi, %edx movl %esi, %ecx

subl Sesi, %edx subl $edx, %ecx

addl %edi, %esi addl %esi, %edx

imull sesi, %edx imull Sedx, %ecx

addl Secx, %eax movl tedi, %edx

addl %edx, %eax subl %esi, %edx

ret addl sedi, %esi
imull $esi, %edx
addl $ecx, %eax
addl $edx, %eax
ret
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I Constant Propagation Optimization 9

#include <stdio.h>

int sum(int a[], int n)

{ .LCO:
int i, s = 0; .string "Sum is %d\n"
for (i = 0; i < n; i++) |main:
s += a[i];
return s; movl $55, 4(%esp)
} movl $.LCO, (%esp)
call printf
int main()
{
int v[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int s = sum(v, 10);
printf ("Sum is %d\n", s);
}
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™ Code Motion Optimization 10

Do not repeat computations if result is known
Usually out of loops (“code hoisting”)

for (i = 0; i < n; i++) {
int ni = n*i;

for (1 = 0; 1 < n; i++) ] i i
ﬁ — ° °
for (j = 0; j < n; jt++) for (? 9’ 2 < i Jt+)
aln*i + j] = b[jl; \ alat + 31 =503
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B Strength Reduction Optimization 11
Substitute lower cost operation for more expensive one

E.g., replace 48*x with (X << 6) — (x << 4)
Often machine dependent
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= Common Subexpression Elimination

Reuse already computed expressions

up =
down =
left =

right =

/* Sum neighbors of i,j */
val[ (i-1)*n + j];
val[ (i+1)*n + j];
val[i*n
val[i*n
sum = up + down

+ j-11;
+ Jj+11]1;
+ left + right;

int inj
up =
down
left =

right =

= i*n +
val[inj
val[inj
val[inj
val[inj

sum = up + down

Optimization 12

3 multiplications: i*n, (i-1)*n, (i+1)*n

J; 1 multiplication: i*n

- n];
+ nj;
- 1];
+ 1],
+ left + right;
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I Eliminating Memory Accesses, Take 1

Register accesses are faster than memory accesses

int spl(int *px, int *py)

{
int sum = *px * *px + *py * *py;
int diff = *px * *px - *py * *py;
return sum * diff;

}

spl:

movl $rdi) , %ecx # eax = *px
movl ($rsi) , %edx # edx = *py
imull %ecx, %ecx

imull %edx, %edx

leal %$rcx,%rdx), %eax # no access
subl %$edx, %ecx

imull %ecx, %eax

ret

Optimization 13

8 pointer
dereferences

2 memory accesses

Number of memory accesses at runtime not determined by how often

pointer dereferences occur in source code
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™ Eliminating Memory Accesses, Take 2 Optimization 14

void sp2(int *px, int *py, .
S Cimerm, S Sizmaacl) 6 pointer dereferences
*psum = *px + *py;
*pprod = *px * *py;
}

sp2:
. _ p
movl $rdi) , %Seax # eax = *px {memory sldbeesies
addl $rsi), %eax # eax = eax + *py <€
movl %eax, (%rdx) # *psum = eax
movl %$rdi) , %eax # eax = *px €«
imull $rsi) , %eax # eax = eax * *py
movl %eax, (%rcx) # *pprod = eax N
ret

... why were *px and *py each loaded twice?
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I Optimization Blocker: Pointer Aliasing Optimization 15

void sp2(int *px, int *py,
int *psum, int *pprod) ({

*psum = *px + *py;
*pprod = *px * *py;
}

The compiler cannot assume that the value of *px does not change between

— —

and *psum = *px + *py;

*ppro;\:‘*px * *py;

How could that happen?

What if px and psum pointed to the same variable in the caller's code?
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B Optimization Blocker: Pointer Aliasing

*psum = *px + *py;
*pprod = *px * *py;
}

void sp2(int *px, int *py,
int *psum, int *pprod) ({

Optimization 16

6 pointer dereferences

Suppose the compiler tried to eliminate memory accesses by doing this:

sp2:

movl $rdi) , %edi
movl (%rsi), %eax
leal $rdi, $rax),
imull %edi, %eax
movl %esi, (%rdx)
movl %eax, (%rcx)
ret

$esi

3H* H= H H HF

edi
eax
esi
edi

*psum

4 memory
*px accesses
*py
*px + *py
*Px * *Py
= esl1l
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™ Erroneous Optimization Optimization 17

The compiler translation shown on the previous slide is equivalent to this:

void sp2(int *px, int *py, int *psum, int *pprod) ({

int xtmp *px;
int ytmp = *py;

*psum = *px + *py;
*pprod = *px * *py;

}

Suppose the caller wrote this:

Co Code above:
int X = 10; X=10and Y =20

int Y 20;

Original translation:

sp2 (&X, &Y, &X, &Y); X =30 and Y = 300

Which is correct? Which was intended?
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Limitations of Optimizing Compilers Optimization 18

Fundamentally, must emit code that implements specified semantics
under all conditions

Can'’t apply optimizations even if they would only change behavior in
corner case a programmer may not think of

Due to memory aliasing
Due to unseen procedure side-effects

Do not see beyond current compilation unit

Intraprocedural analysis typically more extensive (since cheaper) than
Interprocedural analysis

Usually base decisions on static information
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™ Erroneous Optimization Optimization 19

This code:

void sp2(int *px, int *py, int *psum, int *pprod) ({

int xtmp *px;
int ytmp = *py;

*psum = *px + *py;
*pprod = *px * *py;
}

... 1Is NOT logically equivalent to this code:

void sp2(int *px, int *py, int *psum, int *pprod) {

*psum = *px + *py;
*pprod = *px * *py;
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