
Code and Caches 1

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Cache Memory and Performance

Many of the following slides are taken with permission from

Complete Powerpoint Lecture Notes for

Computer Systems: A Programmer's Perspective (CS:APP)

Randal E. Bryant and David R. O'Hallaron

http://csapp.cs.cmu.edu/public/lectures.html

The book is used explicitly in CS 2505 and CS 3214 and as a reference in CS

2506.

http://www.cs.cmu.edu/~bryant
http://www.cs.cmu.edu/~droh
http://csapp.cs.cmu.edu/public/lectures.html

Code and Caches 2

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Locality Example (1)

int sumarraycols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}

int sumarrayrows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}

Claim: Being able to look at code and get a qualitative sense of its locality is a
key skill for a professional programmer.

Question: Which of these functions has good locality?

Code and Caches 3

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Layout of C Arrays in Memory

C arrays allocated in contiguous memory
locations with addresses ascending with the
array index:

int32_t A[10] = {0, 1, 2, 3, 4, ..., 8, 9};

7FFF99702320 0

7FFF99702324 1

7FFF99702328 2

7FFF9970232C 3

7FFF99702330 4

... ...

7FFF99702340 8

7FFF99702344 9

Code and Caches 4

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Two-dimensional Arrays in C

In C, a two-dimensional array is an array of arrays:

int32_t A[3][5] = {

{ 0, 1, 2, 3, 4},

{10, 11, 12, 13, 14},

{20, 21, 22, 23, 24}

};

A[0]

A[1]

A[2]

A: 0x7fff22e41d30

A[0]: 0x7fff22e41d30

0x14

A[1]: 0x7fff22e41d44

0x14

A[2]: 0x7fff22e41d58

In fact, if we print the values as pointers, we see something like this:

2010

Code and Caches 5

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Layout of C Arrays in Memory

Two-dimensional C arrays allocated in row-major
order - each row in contiguous memory locations:

int32_t A[3][5] =

{ { 0, 1, 2, 3, 4},

{10, 11, 12, 13, 14},

{20, 21, 22, 23, 24}

};

7FFF22E41D30 0

7FFF22E41D34 1

7FFF22E41D38 2

7FFF22E41D3C 3

7FFF22E41D40 4

7FFF22E41D44 10

7FFF22E41D48 11

7FFF22E41D4C 12

7FFF22E41D50 13

7FFF22E41D54 14

7FFF22E41D58 20

7FFF22E41D5C 21

7FFF22E41D60 22

7FFF22E41D64 23

7FFF22E41D68 24

Code and Caches 6

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

7FFF22E41D30 0

7FFF22E41D34 1

7FFF22E41D38 2

7FFF22E41D3C 3

7FFF22E41D40 4

7FFF22E41D44 10

7FFF22E41D48 11

7FFF22E41D4C 12

7FFF22E41D50 13

7FFF22E41D54 14

7FFF22E41D58 20

7FFF22E41D5C 21

7FFF22E41D60 22

7FFF22E41D64 23

7FFF22E41D68 24

Layout of C Arrays in Memory

int32_t A[3][5] =

{ { 0, 1, 2, 3, 4},

{10, 11, 12, 13, 14},

{20, 21, 22, 23, 24},

};

Stepping through columns in one row:

for (i = 0; i < 3; i++)

for (j = 0; j < 5; j++)

sum += A[i][j];

- accesses successive elements in memory

- if cache block size B > 4 bytes, exploit spatial

locality compulsory miss rate = 4 bytes / B

i = 0

i = 1

i = 2

Code and Caches 7

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Layout of C Arrays in Memory

int32_t A[3][5] =

{ { 0, 1, 2, 3, 4},

{10, 11, 12, 13, 14},

{20, 21, 22, 23, 24},

};

j = 0

j = 1

Stepping through rows in one column:

for (j = 0; i < 5; i++)

for (i = 0; i < 3; i++)

sum += a[i][j];

accesses distant elements

no spatial locality!

compulsory miss rate = 1 (i.e. 100%)

7FFF22E41D30 0

7FFF22E41D34 1

7FFF22E41D38 2

7FFF22E41D3C 3

7FFF22E41D40 4

7FFF22E41D44 10

7FFF22E41D48 11

7FFF22E41D4C 12

7FFF22E41D50 13

7FFF22E41D54 14

7FFF22E41D58 20

7FFF22E41D5C 21

7FFF22E41D60 22

7FFF22E41D64 23

7FFF22E41D68 24

Code and Caches 8

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

7FFF22E41D30 0

7FFF22E41D34 1

7FFF22E41D38 2

7FFF22E41D3C 3

7FFF22E41D40 4

7FFF22E41D44 10

7FFF22E41D48 11

7FFF22E41D4C 12

7FFF22E41D50 13

7FFF22E41D54 14

7FFF22E41D58 20

7FFF22E41D5C 21

7FFF22E41D60 22

7FFF22E41D64 23

7FFF22E41D68 24

Stride and Array Accesses

Stride 1 Stride 4

Code and Caches 9

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Writing Cache Friendly Code

Miss rate = 1/4 = 25%

int sumarrayrows(int a[M][N]) {

int row, col, sum = 0;

for (row = 0; row < M; row++)

for (col = 0; col < N; col++)

sum += a[row][col];

return sum;

}

Repeated references to variables are good (temporal

locality)

Stride-1 reference patterns are good (spatial locality)

Assume an initially-empty cache with 16-byte cache

blocks.

0

1

2

3

4

5

6

7

i = 0, j = 0

to

i = 0, j = 3

i = 0, j = 4

to

i = 1, j = 2

Code and Caches 10

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Writing Cache Friendly Code

Miss rate = 1/16 = 6.25%

Consider the previous slide, but assume that the cache

uses a block size of 64 bytes instead of 16 bytes..

0

1

2

3

4

5

6

7

8

9

10

. . .

15

16

i = 0, j = 0

to

i = 3, j = 1

int sumarrayrows(int a[M][N]) {

int row, col, sum = 0;

for (row = 0; row < M; row++)

for (col = 0; col < N; col++)

sum += a[row][col];

return sum;

}

Code and Caches 11

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Writing Cache Friendly Code

Miss rate = 100%

int sumarraycols(int a[M][N]) {

int row, col, sum = 0;

for (col = 0; col < N; col++)

for (row = 0; row < M; row++)

sum += a[row][col];

return sum;

}

"Skipping" accesses down the rows of a column do not provide good locality:

(That's actually somewhat pessimistic... depending on cache geometry.)

Code and Caches 12

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Layout of C Arrays in Memory

int A[5] = {0, 1, 2, 3, 4};

for (i = 0; i < 5; i++)

printf("%d: %p\n",

i, &A[i]);

i address

0: 28ABE0

1: 28ABE4

2: 28ABE8

3: 28ABEC

4: 28ABF0

We see there that for a 1D array, the index varies in a stride-1 pattern.

stride-1 :addresses differ by the size of an

array cell (4 bytes, here)

It's easy to write an array traversal and see the addresses at which the array

elements are stored:

Code and Caches 13

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Layout of C Arrays in Memory

int B[3][5] = { ... };

for (i = 0; i < 3; i++)

for (j = 0; j < 5; j++)

printf("%d %3d: %p\n",

i, j, &B[i][j]);

i-j order:

i j address

0 0: 28ABA4

0 1: 28ABA8

0 2: 28ABAC

0 3: 28ABB0

0 4: 28ABB4

1 0: 28ABB8

1 1: 28ABBC

1 2: 28ABC0

We see that for a 2D array,

the second index varies in a

stride-1 pattern.

j-i order:

i j address

0 0: 28CC9C

1 0: 28CCB0

2 0: 28CCC4

0 1: 28CCA0

1 1: 28CCB4

2 1: 28CCC8

0 2: 28CCA4

1 2: 28CCB8

But the first index does not

vary in a stride-1 pattern.

stride-5 (0x14/4)
stride-1

Code and Caches 14

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

3D Arrays in C

int32_t A[2][3][5] = {

{ { 0, 1, 2, 3, 4},

{ 10, 11, 12, 13, 14},

{ 20, 21, 22, 23, 24}},

{ { 0, 1, 2, 3, 4},

{110, 111, 112, 113, 114},

{220, 221, 222, 223, 224}}

};

Code and Caches 15

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Locality Example (2)

int sumarray3d(int a[N][N][N]) {

int row, col, page, sum = 0;

for (row = 0; row < N; row++)

for (col = 0; col < N; col++)

for (page = 0; page < N; page++)

sum += a[page][row][col];

return sum;

}

Question: Can you permute the loops so that the function scans the 3D array
a[][][] with a stride-1 reference pattern (and thus has good spatial

locality)?

Code and Caches 16

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Layout of C Arrays in Memory

int C[2][3][5] = { ... };

for (i = 0; i < 2; i++)

for (j = 0; j < 3; j++)

for (k = 0; k < 5; k++)

printf("%3d %3d %3d: %p\n",

i, j, k, &C[i][j][k]);

i-j-k order:

i j k address

0 0 0: 28CC1C

0 0 1: 28CC20

0 0 2: 28CC24

0 0 3: 28CC28

0 0 4: 28CC2C

0 1 0: 28CC30

0 1 1: 28CC34

0 1 2: 28CC38

We see that for a 3D array,

the third index varies in a

stride-1 pattern:

k-j-i order:

i j k address

0 0 0: 28CC24

1 0 0: 28CC60

0 1 0: 28CC38

1 1 0: 28CC74

0 2 0: 28CC4C

1 2 0: 28CC88

0 0 1: 28CC28

1 0 1: 28CC64

i-k-j order:

i j k address

0 0 0: 28CC24

0 1 0: 28CC38

0 2 0: 28CC4C

0 0 1: 28CC28

0 1 1: 28CC3C

0 2 1: 28CC50

0 0 2: 28CC2C

0 1 2: 28CC40

But… if we change the order of access, we

no longer have a stride-1 pattern:

0x4

0x4

0x4

0x14

0x14

0x14

0x3C

0x28

0x3C

Code and Caches 17

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Locality Example (2)

int sumarray3d(int a[N][N][N]) {

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

for (k = 0; k < N; k++)

sum += a[k][i][j];

return sum;

}

Question: Can you permute the loops so that the function scans the 3D array
a[] with a stride-1 reference pattern (and thus has good spatial

locality)?

This code does not yield good locality at all.

The inner loop is varying the first index, worst case!

Code and Caches 18

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Writing Cache Friendly Code

Key idea: Our qualitative notion of locality is quantified through our
understanding of cache memories.

Make the common case go fast

– Focus on the inner loops of the core functions

Minimize the misses in the inner loops

– Repeated references to variables are good (temporal locality)

– Stride-1 reference patterns are good (spatial locality)

Code and Caches 19

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Miss Rate Analysis for Matrix Multiply

A

k

i

B

k

j

C

i

j

Assume:

Line size = 32B (big enough for four 64-bit words)

Matrix dimension (N) is very large

Approximate 1/N as 0.0

Cache is not even big enough to hold multiple rows

Analysis Method:

Look at access pattern of inner loop

Code and Caches 20

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Matrix Multiplication Example

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

Variable sum
held in register

Description:

Multiply N x N matrices

O(N3) total operations

N reads per source element

N values summed per destination

Code and Caches 21

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Matrix Multiplication (ijk)

/* ijk */

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {

sum = 0.0;

for (k = 0; k < n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

A

(i,*)

B

(*,j)

C

(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

Code and Caches 22

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Matrix Multiplication (kij)

/* kij */

for (k = 0; k < n; k++) {

for (i = 0; i < n; i++) {

r = a[i][k];

for (j = 0; j < n; j++)

c[i][j] += r * b[k][j];

}

}

C

(i,*)

A

(i,k)

B

(k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.25 0.25

Code and Caches 23

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Matrix Multiplication (jki)

/* jki */

for (j = 0; j < n; j++) {

for (k = 0; k < n; k++) {

r = b[k][j];

for (i = 0; i < n; i++)

c[i][j] += a[i][k] * r;

}

}

B

(k,j)

Inner loop:

C

(*,j)

A

(*,k)

Column-
wise

Column-
wise

Fixed

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

Code and Caches 24

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Summary of Matrix Multiplication

ijk (& jik):
2 loads, 0 stores
misses/iter = A 0.25

B 1.00

kij (& ikj):
2 loads, 1 store
misses/iter = A 1.00

C 1.00

jki (& kji):
2 loads, 1 store
misses/iter = B 0.25

C 0.25

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {

sum = 0.0;

for (k = 0; k < n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

for (k = 0; k < n; k++) {

for (i = 0; i < n; i++) {

r = a[i][k];

for (j = 0; j < n; j++)

c[i][j] += r * b[k][j];

}

}

for (j = 0; j < n; j++) {

for (k = 0; k < n; k++) {

r = b[k][j];

for (i = 0; i < n; i++)

c[i][j] += a[i][k] * r;

}

}

Code and Caches 25

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700

C
y
c

le
s

 p
e

r
in

n
e
r

lo
o

p
 i

te
ra

ti
o

n

Array size (n)

jki

kji

ijk

jik

kij

ikj

Core i7 Matrix Multiply Performance

jki / kji

ijk / jik

kij / ikj

Be careful of the vertical scale here… it's actually rather messy.

Code and Caches 26

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700

C
y
c

le
s

 p
e

r
in

n
e

r
lo

o
p

 i
te

ra
ti

o
n

Array size (n)

jki

kji

ijk

jik

kij

ikj

Core i7 Matrix Multiply Performance

jki / kji

ijk / jik

kij / ikj

1. for large n, the kij/ikj versions run about 40 times faster than the jki/kji versions

even though each version performs the same number of arithmetic operations!

Code and Caches 27

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700

C
y
c

le
s

 p
e

r
in

n
e

r
lo

o
p

 i
te

ra
ti

o
n

Array size (n)

jki

kji

ijk

jik

kij

ikj

Core i7 Matrix Multiply Performance

jki / kji

ijk / jik

kij / ikj

2. pairs with the same miss count per iteration have essentially identical

performance

miss rate is a better predictor of performance than the number of memory

accesses, at least in this example

Code and Caches 28

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700

C
y
c

le
s

 p
e

r
in

n
e

r
lo

o
p

 i
te

ra
ti

o
n

Array size (n)

jki

kji

ijk

jik

kij

ikj

Core i7 Matrix Multiply Performance

jki / kji

ijk / jik

kij / ikj

3. for the fastest pair, the cycle count is essentially constant as n increases

the Intel cache prefetches intelligently, reacting to the stride-1 pattern quickly

enough to keep up, even though the inner loop body is tight

Code and Caches 29

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Concluding Observations

Programmer can optimize for cache performance

How data structures are organized

How data are accessed

Nested loop structure

Blocking is a general technique

All systems favor “cache friendly code”

Getting absolute optimum performance is very platform specific

Cache sizes, line sizes, associativities, etc.

Can get most of the advantage with generic code

Keep working set reasonably small (temporal locality)

Use small strides (spatial locality)

