
Cache Memory 1

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Cache Memory and Performance

Many of the following slides are taken with permission from

Complete Powerpoint Lecture Notes for

Computer Systems: A Programmer's Perspective (CS:APP)

Randal E. Bryant and David R. O'Hallaron

http://csapp.cs.cmu.edu/public/lectures.html

The book is used explicitly in CS 2505 and CS 3214 and as a reference in CS

2506.

http://www.cs.cmu.edu/~bryant
http://www.cs.cmu.edu/~droh
http://csapp.cs.cmu.edu/public/lectures.html

Cache Memory 2

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Cache Memories

Cache memories are small, fast SRAM-based memories managed automatically

in hardware.

CPU looks first for data in caches (e.g., L1, L2, and L3), then in main memory.

Typical system structure:

Main

memory
I/O

bridge
Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Cache

memories

Cache Memory 3

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

General Cache Organization (S, K, B)

K = 2k lines (blocks) per set

S = 2s sets

set

Cache size:
C = S x K x B data bytes

B = 2b bytes per cache block (the data)

0

1

2

3

2s-1

0 1 2k-1

line (block)

0 1 2 B-1tagv

valid bit

Cache Memory 4

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Cache Defines View of DRAM

The "geometry" of the cache is defined by:

S = 2s the number of sets in the cache

K = 2k the number of lines (blocks) in a set

B = 2b the number of bytes in a line (block)

These values define a related way to think about the organization of DRAM:

DRAM consists of a sequence of blocks of B bytes.

The bytes in a block (line) can be indexed by using b bits.

DRAM consists of a sequence of groups of S blocks (lines).

The blocks (lines) in a group can be indexed by using s bits.

Each group contains SxB bytes, which can be indexed by using s + b bits.

Cache Memory 5

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Cache (8, 2, 4) and 256-Byte DRAM

K = 21 blocks (lines) per set

S = 23 sets

Cache size:
C = S x K x B = 64 data bytes

0

0 1

0

1

5

6

7

4

3

2

0 1 2tagv

B = 22 bytes per cache block (the data)
valid bit

3

0

1

2

3

4

5

6

7

.

252

253

254

255

DRAM

Cache Memory 6

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Cache View of DRAM

So, to generalize, suppose a cache has:

S = 2s sets

K = 2k blocks (lines) per set

B = 2b bytes per block (line)

And, suppose that DRAM uses N-bit addresses. then for any address:

aN-1 … as+b as+b-1 … ab ab-1 … a0

Bits ab-1:a0 give the byte index within the block

Bits ab+s-1:ab give the set index

Bits aN-1:as+b become the tag for the data

Note that these bits are only the same for blocks

that are within the same DRAM group.

Cache Memory 7

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Cache Read

t bits s bits = K b bits = J

Address of word:

1. Locate set
2. Check if any line in set has matching tag
3. Yes + line valid: hit
4. Locate data starting at offset

Line
Set
0

1

K

2s-1

0 1 2k-1

K

0 1 2b-1tagv J

set
index

1

tag

2

3

block
offset

data begins at this offset 4

Cache Memory 8

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Example: Direct Mapped Cache (K = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Cache Memory 9

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Example: Direct Mapped Cache (K = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

block offset

tag

matching tags  hitvalid? +

Cache Memory 10

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Example: Direct Mapped Cache (K = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

int (4 Bytes) is here

block offset

No match: old line (block) is evicted and replaced by requested block from DRAM

matching tags  hitvalid? +

Cache Memory 11

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

K-way Set Associative Cache (Here: K = 2)

K = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

Cache Memory 12

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

K-way Set Associative Cache (Here: K = 2)

K = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

block offset

tag

matching tags  hitvalid? +

Cache Memory 13

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

K-way Set Associative Cache (Here: K = 2)

K = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

block offset

short int (2 Bytes) is here

No match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

matching tags  hitvalid? +

Cache Memory 14

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Cache Organization Types

The "geometry" of the cache is defined by:

S = 2s the number of sets in the cache

K = 2k the number of lines (blocks) in a set

B = 2b the number of bytes in a line (block)

K = 1 (k = 0) direct-mapped cache

only one possible location in cache for each DRAM block

S > 1

K > 1 K-way associative cache

K possible locations (in same cache set) for each DRAM

block

S = 1 (only one set) fully-associative cache

K = # of cache blocks each DRAM block can be at any location in the cache

Cache Memory 15

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Cache Example

5-bit addresses (32-word DRAM)

Direct-mapped, 8-blocks, 1 word/block

Index Valid Tag Data

000 0

001 0

010 0

011 0

100 0

101 0

110 0

111 0

Cache Memory 16

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Cache Example

Index Valid Tag Data

000 0

001 0

010 0

011 0

100 0

101 0

110 1 10 Mem[10110]

111 0

Memory access

address 10 110

hit? N

10 110

address % #sets

set to hold data

address / #sets

set to hold data

Cache Memory 17

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Cache Example

Index Valid Tag Data

000 0

001 0

010 1 11 Mem[11010]

011 0

100 0

101 0

110 1 10 Mem[10110]

111 0

Memory access

address 11 010

hit? N

11 010

address % #sets

set to hold data

address / #sets

set to hold data

Cache Memory 18

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Cache Example

Index Valid Tag Data

000 0

001 0

010 1 11 Mem[11010]

011 0

100 0

101 0

110 1 10 Mem[10110]

111 0

Memory access

address 10 110

Identify the

cache slot

If valid bit is 1…

and tags match... hit!

Cache Memory 19

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Cache Example

Index Valid Tag Data

000 0 10 Mem[10000]

001 0

010 1 11 Mem[11010]

011 0 00 Mem[00011]

100 0

101 0

110 1 10 Mem[10110]

111 0

Memory accesses

address 10 000 miss

address 00 011 miss

address 10 000 hit

Cache Memory 20

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Cache Example

Index Valid Tag Data

. . .

010 1 11 Mem[11010]

. . .

Memory access

address 10 010 miss (tags don't match)

Index Valid Tag Data

. . .

010 1 10 Mem[10010]

. . .

replacement

Cache Memory 21

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Block Size Considerations

Larger blocks should reduce miss rate

- due to spatial locality (if present)

But in a fixed-sized cache

- larger blocks  fewer of them

more competition  increased miss rate

- larger blocks  pollution

Larger miss penalty

- can override benefit of reduced miss rate

- early restart and critical-word-first can help

Cache Memory 22

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Cache Misses

On cache hit, CPU proceeds normally

On cache miss:

- stall the CPU pipeline

- fetch block from next level of hierarchy

- instruction cache miss

restart instruction fetch

- data cache miss

complete data access

Cache Memory 23

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Write-Through

On data-write hit, could just update the block in cache

- but then cache and memory would be inconsistent

Write through: also update memory

But makes writes take longer

- e.g., if base CPI = 1, 10% of instructions are stores, write to memory
takes 100 cycles

- effective CPI = 1 + 0.1×100 = 11

Solution: write buffer

- holds data waiting to be written to memory

CPU continues immediately

- only stalls on write if write buffer is already full

Cache Memory 24

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Write-Back

Alternative: On data-write hit, just update the block in cache

- keep track of whether each block is dirty

When a dirty block is replaced

- write it back to memory

- can use a write buffer to allow replacing block to be read first

Cache Memory 25

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Write-Allocation

What should happen on a write miss?

Alternatives for write-through

- allocate on miss: fetch the block

- write around: don’t fetch the block

since programs often write a whole block before reading it

(e.g., initialization)

For write-back

- usually fetch the block

Cache Memory 26

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

DRAM Supporting Caches

Use DRAMs for main memory

- fixed width (e.g., 1 word)

- connected by fixed-width clocked bus

- bus clock is typically slower than CPU clock

Example cache block read

- 1 bus cycle for address transfer

- 15 bus cycles per DRAM access

- 1 bus cycle per data transfer

For 4-word block, 1-word-wide DRAM

- miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles

- bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Cache Memory 27

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Measuring Cache Performance

Components of CPU time

- program execution cycles

- includes cache hit time

- memory stall cycles

- mainly from cache misses

With simplifying assumptions:

Memory stall cycles

Memory accesses
 = Miss rate Miss penalty

Program

Instructions Misses
 = Miss penalty

Program Instruction

 

 

Cache Memory 28

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Cache Performance Operation

Given

- I-cache miss rate = 2%

- D-cache miss rate = 4%

- miss penalty = 100 cycles

- base CPI (ideal cache) = 2

Miss cycles per instruction

- I-cache: 0.02 × 100 = 2

- D-cache: 0.36 × 0.04 × 100 = 1.44

Actual CPI = 2 + 2 + 1.44 = 5.44

- ideal CPU is 5.44/2 =2.72 times faster

Cache Memory 29

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Average Access Time

Hit time is also important for performance

Average memory access time (AMAT)

– AMAT = Hit time + Miss rate × Miss penalty

Example

- CPU with 1ns clock,

hit time = 1 cycle,

miss penalty = 20 cycles,

I-cache miss rate = 5%

- AMAT = 1 + 0.05 × 20 = 2ns (2 cycles per instruction)

Cache Memory 30

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Performance Summary

When CPU performance increased

– Miss penalty becomes more significant

Decreasing base CPI

– Greater proportion of time spent on memory stalls

Increasing clock rate

– Memory stalls account for more CPU cycles

Can’t neglect cache behavior when evaluating system performance

Cache Memory 31

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Associative Caches

Fully associative

- allow a given block to go in any cache entry

- requires all entries to be searched at once

- comparator per entry (expensive)

K-way set associative

- cach set contains K entries

- block number determines which set

(Block number) modulo (#Sets in cache)

- search all entries in a given set at once

- K comparators (less expensive)

Cache Memory 32

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Associative Cache Example

Cache Memory 33

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Spectrum of Associativity

Capacity: 8 blocks of user data

Cache Memory 34

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Associativity Example

Compare 4-block caches

- direct mapped vs 2-way set associative vs fully associative

- block access sequence: 0, 8, 0, 6, 8

Block

address

Cache

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Direct mapped

Cache Memory 35

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Associativity Example

2-way set associative

Block

address

Cache

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Block

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

Fully associative

Cache Memory 36

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

How Much Associativity?

Increased associativity decreases miss rate

- but with diminishing returns

Simulation of a system with 64KB

D-cache, 16-word blocks, SPEC2000

- 1-way: 10.3%

- 2-way: 8.6%

- 4-way: 8.3%

- 8-way: 8.1%

Cache Memory 37

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Set Associative Cache Organization

Compare the tag

we’re trying to

match to all of the

tags for blocks in

the relevant set at

the same time!

Then factor in the

valid bits, also in

parallel.

And employ

a MUX

Cache Memory 38

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Replacement Policy

Direct mapped: only one choice

Set associative

- prefer non-valid entry, if there is one

- otherwise, choose among entries in the set

Least-recently used (LRU)

- choose the one unused for the longest time

simple for 2-way, manageable for 4-way, too hard beyond that

Random

- gives approximately the same performance as LRU for high
associativity

Cache Memory 39

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Multilevel Caches

Primary (L-1) cache attached to CPU

- small, but fast

Level-2 cache services misses from primary cache

- larger, slower, but still faster than main memory

Some high-end systems include L-3 cache

Main memory services L-2 cache misses

Cache Memory 40

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Multilevel Cache Example

Given

- CPU base CPI = 1, clock rate = 4GHz

- miss rate/instruction = 2%

- main memory access time = 100ns

With just primary cache

- miss penalty = 100ns / 0.25ns = 400 cycles

- effective CPI = 1 + 0.02 × 400 = 9

Cache Memory 41

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Multilevel Cache Example

Now add L-2 cache

- access time = 5ns

- global miss rate to main memory = 0.5%

Primary miss with L-2 hit

- penalty = 5ns / 0.25ns = 20 cycles

Primary miss with L-2 miss

- extra penalty = 500 cycles

CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4

Performance ratio = 9/3.4 = 2.6

Cache Memory 42

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Multilevel Cache Considerations

Primary cache

- focus on minimal hit time

L-2 cache

- focus on low miss rate to avoid main memory access

- hit time has less overall impact

Results

- L-1 cache usually smaller than a single monolithic cache

- L-1 block size smaller than L-2 block size (then again…)

Cache Memory 43

Computer Organization IICS@VT ©2005-2020 CS:APP & McQuain

Example: Intel Core i7 Cache

Regs

L1

d-cache

L1

i-cache

L2 unified cache

Core 0

Regs

L1

d-cache

L1

i-cache

L2 unified cache

Core 3

…

L3 unified cache

(shared by all cores)

Main memory

Processor package

2700 Series

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,

Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 25-40
cycles

Block size: 64 bytes for
all caches.

