
Handling Branches 1

Computer Organization IICS@VT ©2005-2020 WD McQuain

Branch Hazards

Consider executing this sequence of instructions in the pipeline:

address instruction

36: sub $10, $4, $8

40: beq $1, $3, L1

44: and $12, $2, $5

48: or $13,$12,$13

52: add $14, $4, $2

56: slt $15, $6, $7

...

72: L1: lw $4, 50($7)

When beq moves into the ID stage:

- should we fetch the instruction at address 44?

- it may or may not be executed next, depending on whether $1 == $3

- we don’t know the address of the branch target instruction yet anyway

Handling Branches 2

Computer Organization IICS@VT ©2005-2020 WD McQuain

Branch Hazards

address instruction

36: sub $10, $4, $8

40: beq $1, $3, L1

44: and $12, $2, $5

...

72: L1: lw $4, 50($7)

When beq enters the ID stage, we don’t even know it is a conditional branch.

And… we won’t know if the branch should be taken until beq reaches the end of

EX.

??? beq sub

Hey!

It’s a branch!

Handling Branches 3

Computer Organization IICS@VT ©2005-2020 WD McQuain

Branch Hazards

So… we will have already fetched the next (sequential) instruction.

and beq sub

Hey!

It’s a branch!

address instruction

36: sub $10, $4, $8

40: beq $1, $3, L1

44: and $12, $2, $5

...

72: L1: lw $4, 50($7)

Handling Branches 4

Computer Organization IICS@VT ©2005-2020 WD McQuain

Stalling for Branch Hazards

Idea: insert stalls until we know if the branch will be taken.

We can’t act on that information before beq reaches the MEM stage.

Note:

the AND gate fires quickly

enough that we can still fetch

the branch target, on the

same cycle, if the branch is

taken.

Handling Branches 5

Computer Organization IICS@VT ©2005-2020 WD McQuain

Stalling Until Branch Decision

cycle action beq

0: fetch sub

1: fetch beq IF

2: fetch and ID

3: stall EX

4: stall MEM

5: fetch and/lw

Idea: insert stalls until we know if the branch will be taken.

That’s expensive.

If we don’t take the branch, we needlessly delayed the and instruction for 2

cycles.

fetch stall stall beq sub

Hamlet Hamlet

Branch!

or

Don’t branch!

Handling Branches 6

Computer Organization IICS@VT ©2005-2020 WD McQuain

Rollback for Branch Hazards

Idea: proceed as if the branch will not be taken;

turn mis-fetched instructions into nops if wrong.

If branch is taken, flush*

these instructions

(set control values to 0)

*QTP: will this be too late?

Handling Branches 7

Computer Organization IICS@VT ©2005-2020 WD McQuain

Questions

Questions to ponder:

- What about calculating the branch target address?

Can that be done in the ID stage?

- What about the register comparison?

Can that be done in the ID stage?

What about other kinds of conditional branches (e.g., bgez,)?

Could we rearrange the datapath so that the branch decision could be made

earlier?

Handling Branches 8

Computer Organization IICS@VT ©2005-2020 WD McQuain

Making Branch Decisions Earlier

Stall if branch is taken, proceed normally otherwise:

and beq

or and beq

lw nop beq

Cost is now one stall if branch is taken, nothing if branch is not taken.

Handling Branches 9

Computer Organization IICS@VT ©2005-2020 WD McQuain

Making Branch Decisions Earlier

We can determine if the

branch will be taken before
beq reaches the EX stage.

Ideas: simple hardware suffices to compare two registers

moving the branch adder is relatively simple

But we also need to create a

stall for one cycle…

Handling Branches 10

Computer Organization IICS@VT ©2005-2020 WD McQuain

Stall-on-Branch

Whenever we decode a beq instruction:

QTP
Does this design actually

accomplish that?

- we need to stall the instruction that follows the beq

- we have the ability to turn the instruction in the ID stage into a nop

- but we need to trigger that one cycle after decoding the beq

Handling Branches 11

Computer Organization IICS@VT ©2005-2020 WD McQuain

The Big (but not quite final) Picture

Handling Branches 12

Computer Organization IICS@VT ©2005-2020 WD McQuain

Data Hazards for Branches

If a comparison register in beq is a destination of 2nd or 3rd preceding R-type

instruction

Can resolve using forwarding, without any stalls

add $3, $1, $4

sub $4, $5, $6

add $1, $2, $3

beq $1, $4, target

beq

add

sub

Handling Branches 13

Computer Organization IICS@VT ©2005-2020 WD McQuain

Data Hazards for Branches

If a comparison register is a destination of the immediately-preceding

type instruction or 2nd preceding load instruction

– Need to stall beq for 1 cycle

beq stalled

add $4, $5, $6

lw $1, addr

beq $1, $4, target

beq

lw

add

nop nop nop

Handling Branches 14

Computer Organization IICS@VT ©2005-2020 WD McQuain

Data Hazards for Branches

If a comparison register is a destination of immediately preceding load

instruction

– Need to stall for 2 cycles

beq stalled

beq stalled

lw $1, addr

beq $1, $0, target

beq

lw

nop nop nop

nop nop nop

Handling Branches 15

Computer Organization IICS@VT ©2005-2020 WD McQuain

Data Hazards for Branches

So, the latest version of the datapath will require more modifications:

- these hazards must be detected in by new hardware in the ID stage

- the actual forwarding (substitution) operations also require new hardware in

the ID stage

These changes are similar to the earlier discussion of forwarding.

Details are left as an exercise.

- handling these hazards requires stalling, as with lw, but…

- if the writing instruction is one cycle ahead of beq we need 2 stall

cycles

- if the writing instruction is two cycles ahead of beq we need 1 stall

cycle

