Branch Hazards Handling Branches 1

Consider executing this sequence of instructions in the pipeline:

address instruction

36: sub $10, $4, S8
40 beq S$1, $3, L1
44 - and $12, $2, S5
48: or $13,512,513
52: add $14, $4, $2
56: slt $15, $6, S$7
72 Ll1: 1w s4, 50(S7)

When beqg moves into the ID stage:

- should we fetch the instruction at address 447
- it may or may not be executed next, depending on whether $1 == $3
- we don’t know the address of the branch target instruction yet anyway

CS@VT Computer Organization Il ©2005-2020 WD McQuain

Branch Hazards Handling Branches 2

When beqg enters the ID stage, we don’t even know it is a conditional branch.

And... we won’t know if the branch should be taken until beq reaches the end of
EX.

Hey!
It's a branch!

IF - MEMH | WB
277 beqg sub
address instruction
36: sub $10, $4, $8
40: beg $1, $3, L1
44 and $12, $2, S5
72 Ll: 1w S4, 50(S7)

CS@VT Computer Organization Il ©2005-2020 WD McQuain

" Branch Hazards

Handling Branches 3

So... we will have already fetched the next (sequential) instruction.

Hey!
It's a branch!

=

sub

IF = 1D
—» and beq
address instruction
36: sub $10, S$4, $8
40: beg $1, $3, L1
44 and $12, $2, $5
72 Ll: 1w $4, 50($7)
CS@VT Computer Organization Il

MEMq | WB

©2005-2020 WD McQuain

I Stalling for Branch Hazards Handling Branches 4

Idea: insert stalls until we know if the branch will be taken.

We can’t act on that information before beqg reaches the MEM stage.

——
‘) Add |
RegDst @
Branch |_>
\ MemRead [
4 —>| Instruction [31:26] Contml} mz::;':;g]
/ ALUop o
ALUSrc [
z 1
'\UA Read Instruction [25:21] Read
X P address register 1
¢ Instruction [20:16] Read 5:‘::11 o
Instn[g}li%r] L IN register 2
| ? " d2 ™ g
Writ ata | Add
N Ote : Instruction regi;er ’\Q Read
)) memory >-[1 data [T [1M
Writ
the AND gate fires quickly i registor | fe E
g data Data
enough that we can still fetch | N Data [
Instruction [15:0] |9n‘d ALU
exten - Control >
the branch target, on the \io32/

same cycle, if the branch is instuction 20:16

take n - Instruction [15:11] X
=1
IF/ID ID/EX EX/MEM MEM/WB

CS@VT Computer Organization Il ©2005-2020 WD McQuain

Stalling Until Branch Decision Handling Branches 5

Idea: insert stalls until we know if the branch will be taken.

cycle action beq
0 fetch sub
1 fetch beqg IF
2 fetch and ID
3 stall EX
That’'s expensive. 4 stall MEM
5 fetch and/lw

If we don’t take the branch, we needlessly delayed the and instruction for 2
cycles.

Branch!

IE M- 1D *H%H MEMH | WB

fetch stall stall beqg sub

CS@VT Computer Organization Il ©2005-2020 WD McQuain

" Rollback for Branch Hazards

Idea: proceed as if the branch will not be taken;
turn mis-fetched instructions into nops if wrong.

Time (in clock cycles)

CC 1 CcCc2 CC3 CC4 CC5 CCe6 CC7 CC8 CC9
Program
execution
order
(in instructions)
40 beq $1, $3, 28 EI.—I—DI

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

—

72 lw $4, 50($7)

\

*QTP:

CS@vT Computer Organization Il

Handling Branches 6

If branch is taken, flush*
these instructions
(set control values to 0)

will this be too late?

©2005-2020 WD McQuain

Questions Handling Branches 7

Could we rearrange the datapath so that the branch decision could be made
earlier?

Questions to ponder:

- What about calculating the branch target address?
Can that be done in the ID stage?

- What about the register comparison?

Can that be done in the ID stage?
What about other kinds of conditional branches (e.g., bgez,)?

CS@VT Computer Organization Il ©2005-2020 WD McQuain

Making Branch Decisions Earlier Handling Branches 8

Stall if branch is taken, proceed normally otherwise:

_—F l 'DiﬁgH

v : or and
IF - D %H
and beqg

L L A e

1w nop

Cost is now one stall if branch is taken, nothing if branch is not taken.

CS@VT Computer Organization Il ©2005-2020 WD McQuain

Making Branch Decisions Earlier

Ideas:

We can determine if the <\
branch will be taken before .
beg reaches the EX stage.

stall for one cycle...

But we also need to create a
4 —
OM
U PO aaress
1 X
Instr [31:0]>
Instruction

CS@VT

simple hardware suffices to compare two registers

moving the branch adder is relatively simple
\ ID: Instruction decode and register read

IF: Instruction fetch

Handling Branches 9

1
/

/}

InhibitFetch ID/EX.MemRead
Instr [25:21] Load-Use) |
Hazard
Instr [20:16] Detectio Create
i Stall Stall

[ID/EX.RegisterRt

S~ |

Branch
MemRead

MemtoReg

Computer Organization Il

s
Instr [31:26] Control MemWrite
ALUop
ALUSrc
RegWrite
EqualOps
Instr [25:21] Read
" register 1
Read
Instr [20:16] _|Read data 1
register 2
Read
Write data 2
I—> register

©2005-2020 WD McQuain

Stall-on-Branch

Whenever we decode a beq instruction:

- we need to stall the instruction that follows the beg

- we have the ability to turn the instruction in the ID stage into a nop

Handling Branches 10

- but we need to trigger that one cycle after decoding the beqg

QTP

Does this design actually
accomplish that?

CS@VT

IF: Instruction fetch

ID: Instruction decode and redister read

InhibitFetch

Instr [25:21]

Instr [20:16]

Y

[ID/EX.RegisterRt

(Load-Use —
Hazard -
Detection

I[B/EX.MemRead

unit Stall

4—

7~/ M

Y

&)

RegDst

>

Create -I
Stall

>
>

Instr [31:26]

Computer Organization Il

Branch
MemRead

MemtoReg

MemWrite

ALUop

ALUSrc

>(Control
/
RegWrite

EqualOps

©2005-2020 WD McQuain

™ The Big (but not quite final) Picture Handling Branches 11

IF: Instruction fetch ID: Instruction decode and register read EX: Execute/Address calc MEM: Memory Access WB: Write back

InhibitFetch ID/EX.MemRead
Instr [25:21] Lc;'aat;-aur;e | 'WHB| 'WB| WB
Instr [20:16] Detection L Create — — [
tall
a Stall M M
[ID/EXRegisterRt — —
EX
WEA
RegDst
Branch
MemRead
~ MemtoReg
4] rerEE) N e UL e
I ALUop
/ ALUSrc
RegWrite
EqualOps
0 M |
U |,/ Read Instr [25:21] Read
X address register 1
1 Read
Instr [20:16] Read data 1
Instr [31:0]>] e
Read
—»| Write data 2 M Address
register
Instruction < Read 7
memory data [T ['M
Write U
>
data Registers | Write OX
data Data
i memory
Instr [15:0] Sign- ALU —|
extend Control
16-32
Instr [20:16] Instr 15:0]
H>(0
M
U]
Instr [15:11] X ForwardA
T ForwardB
Forwarding
unit
L L - —J —J
IF/ID ID/EX EX/MEM MEM/WB

CS@VT Computer Organization Il ©2005-2020 WD McQuain

I Data Hazards for Branches Handling Branches 12

If a comparison register in beq is a destination of 2"d or 3" preceding R-type
instruction

Can resolve using forwarding, without any stalls

add , $2, $3 IF +H |D**%HMEM+ WB

sub A\ S5, $6 F koD]

WB

add $3,J $1,\ $4 = MEM*H WB

et

beq , , target

CS@VT Computer Organization Il ©2005-2020 WD McQuain

I Data Hazards for Branches Handling Branches 13

If a comparison register is a destination of the immediately-preceding
type instruction or 2"d preceding load instruction

Need to stall beqg for 1 cycle

1w , addr IF H D | %H MEM|-y-| WB
add $4, $5, $6 F H IDE

beqg

WB

MEM +H— WB

nop nop

o

beqg , , target

CS@VT Computer Organization Il ©2005-2020 WD McQuain

" Data Hazards for Branches

Handling Branches 14

If a comparison register is a destination of immediately preceding load

Instruction

Need to stall for 2 cycles

1w , addr IF H ID H%H MEM -
* 1w

beg IF *H ID *_*8{HMEM
(L -

beqg IF - ID

H WB

nop
I H MEM+H WB
n nop nop

beq , , target IF

¥

[t

CS@VT Computer Organization Il

o
D |
beqg

©2005-2020 WD McQuain

Data Hazards for Branches Handling Branches 15

So, the latest version of the datapath will require more modifications:

- these hazards must be detected in by new hardware in the ID stage

- the actual forwarding (substitution) operations also require new hardware in
the ID stage

- handling these hazards requires stalling, as with 1w, but...

- If the writing instruction is one cycle ahead of beq we need 2 stall
cycles

- If the writing instruction is two cycles ahead of beg we need 1 stall
cycle

These changes are similar to the earlier discussion of forwarding.

Details are left as an exercise.

CS@VT Computer Organization Il ©2005-2020 WD McQuain

