B Unsimplified Datapath with Forwarding Pipeline Stalls 1

IF: Instruction fetch 1D: Instruction decode and register read Ex: Executeifddress calc MEM: Memory Access WhH: Write back
M
a dd WE WE We
sub . Wi
—=
and —]
= EX
il —
or
|
S l t _).N:Id - ol
ri
sw _ _.
Branch _D—
T niemRead
hermta Reg
No: EEE R L s
| ALuop
lW J ALUsmc
Regirite

beqg - |
7 E P |4 Read netr [25:21] Read
j x address register 1

nstr [20:16] Read E:taad'l
Instr (31:0] >] regiter2

This design has: ner e O — J'
* logic for synchronizing o

control signals and o .

Instructions
» forwarding logic o —
* no hazard detection.

CS@VT Computer Organization Il ©2005-2020 WD McQuain

" Load-Use Data Hazard Pipeline Stalls 2

Consider the following sequence of instructions:
1w st2, 20(Stl) # writes a wvalue
and St4, St2, St5 # reads that wvalue

This hazard cannot be resolved by simple forwarding... why not?

F ML D *H%H MEM-| | WB
and

1w

The value 1w writes into $t2 is not available until 1w completes the MEM stage,
but and needs that value when it enters the EX stage, which is when 1w enters
the MEM stage.

QTP: why can this situation not occur if
the writing instruction is R-type?

CS@VT Computer Organization Il ©2005-2020 WD McQuain

Handling a Load-Use Hazard Pipeline Stalls 3

A load-use hazard requires delaying the execution of the using instruction until
the result from the loading instruction can be made available to the using
Instruction.

1w St2, 20(stl) # loads S$t2
and St4, St2, S$t5 # uses S$St2

F ML D *H%H MEM-| | WB

and STALL 1w

If we can stall the execution of the using instruction for one cycle:

- value to be loaded to st2 will be available in the MEM/WB buffer when the
using instruction moves from ID to EX

- that value can be forwarded to the using instruction as the using instruction
enters the EX stage

CS@VT Computer Organization Il ©2005-2020 WD McQuain

I Detection Pipeline Stalls 4

When can we detect the existence of a load-use hazard?

When we are decoding the using instruction --- if we remember right
iInformation about the preceding instruction.

What do we need to remember?

- whether the preceding instruction reads a value |
from data memory

ID/EX.MemRead

- whether thatyalue is written to a register that

: . ID/EX.ReqisterRt
current instrudtion reads from

IF/ID.RegisterRs
— IF/ID.RegisterRt

Why do we not need to consider this question?

CS@VT Computer Organization Il ©2005-2020 WD McQuain

Load-Use Hazard Detection Pipeline Stalls 5

The loading instruction must be just that... so it writes to register rt.

There is a load-use hazard when _ _ _ _
— 1 iff we're executing a load instruction

V

ID/IEX.MemRead AND

((ID/EX.RegisterRt == IF/ID.RegisterRs) OR
((ID/EX.RegisterRt == IF/ID.RegisterRt))

If detected... do what? _ _ _
ID/EX shows register being written to;

IF/ID shows registers being read from

CS@VT Computer Organization Il ©2005-2020 WD McQuain

How to Stall the Pipeline Pipeline Stalls 6

“If it isn't written down, it didn't happen.” _ _

RegDst ‘

Force all control values in ID/EX register to
O [nstr [31:26]

- when using reaches ID stage
- EX, MEM and WB do a nop

Prevent update of PC and IF/ID registers
- using instruction is decoded again
- Instruction after the using instruction will be fetched again
- 1-cycle stall allows MEM to read data for 1w
- can subsequently forward data to using instruction in EX stage

CS@VT Computer Organization Il ©2005-2020 WD McQuain

Trace

1w $2, 20($1)
and $4, $2, $5
or $8, S$2, $6
add $9, $4, S$2

- TH A L=

or and

Pipeline Stalls 7

MEM+H WB

When and reaches the ID stage, the hazard involving $2 is detected.

All the control signals from the ID stage are set to O and the PC and IF/ID
Interstage buffer are prevented from updating.

CS@VT

Computer Organization Il

©2005-2020 WD McQuain

Trace Pipeline Stalls 8

Resetting the control signals and locking PC and IF/ID cause:

et

or and STALL 1w

Because IF/ID is not updated, the and instruction is processed through ID

again.
Because PC is not updated, the or instruction is fetched again in the IF

stage.
And:
- EX operates as usual (with all relevant signals 0)
- EX sends only 0 control signals to MEM for the next cycle

1w reaches the MEM stage and reads the value to be written to $2.
That value goes into MEM/WB.

CS@VT Computer Organization Il ©2005-2020 WD McQuain

Trace Pipeline Stalls 9

FE ML D % MEMH | wB

add or and STALL 1w

On the next cycle:

The control signals for and (set in ID in the previous cycle) reach EX.
The value for $2 in MEM/WB is forwarded to the ALU in EX.

And:
- MEM operates as usual (with all relevant signals 0)
- MEM sends only 0 control signals to WB for the next cycle

Instructions preceding and proceed normally...

CS@VT Computer Organization Il ©2005-2020 WD McQuain

Stall/Bubble in the Pipeline Pipeline Stalls 10

-8 s e

On the following cycles:

add and STALL
IF *H ID *H%H MEM+H WB
add or and

...and soon...

The execution time has increased by one clock cycle.

CS@VT Computer Organization Il ©2005-2020 WD McQuain

B Simplified Datapath with Hazard Detection Pipeline Stalls 11

m ID/EX.MemRead
detection [

- unit
2 i
% ID/EX
= wB EX/MEM
. »Control M »-WB LhiEM/WB
= . . |
(% |F"|D EX M WB
a
4
> > > M
= -
5 . X
3] Registers N/ . -
Y = +— > . M
, 3) SR u
pcl,| Instruction | | | =] gl
memory - Data X
> u * memory
- X
IF/ID.RegisterRs - ~
|IF/ID.RegisterRt .)
IF/ID.RegisterRt X Rt M
IF/ID.RegisterRd - Rd. : - >
ID/EX.RegisterRt _/
Rs Forwarding
Rt unit)

CS@VT Computer Organization Il ©2005-2020 WD McQuain

Stall Detalls

CS

IF: Instruction fetch

Pipeline Stalls 12

ID: Instruction decode and register read

InhibitEetch == /

locks buffer and PC

pih

Instr [25:21]

InhibitFetch

Instr [20:16]

Hazard
Detection
unit

Stall | Stall
ID/EX.RegisterRt | ‘

Stall == 1 iff load-use hazard

4 (load-use) \

ID/EX.MemRead

Create

wWB

1

Y

Add
4 —
/
»10
M —‘
U PC »| Read
X address
>1
Instr [31:0]

VT

RegDst

Branch

Instr [31:26]

Instr [25:21]
¢

> Control

MemRead

MemtoReg

MemWrite

ALUop

/

ALUSIrc

RegWrite

Zeroes all
control
signals iff
Stall ==

Instr [20:16]

>

Computer Organization Il

Read
register 1

»| Read
| register 2

Read

data 1

—>(00

Fl

©2005-2020 WD McQuain

Unsimplified Datapath with Hazard Detection Pipeline Stalls 13

IF: Instruction fetch ID: Instruction decode and register read EX: Execute/Address calc MEM: Memory Access WB: Write back

Yes:
add i nhibitFetcl

ID/EX.MemRead I
Instr [25:21] (Ic':—'aadz-ali@ 4_‘ 'WB| WB| wB
su b Instr [20:16] Detection Create — [H—
— > stall M M
a 1,.1 d ID/EX.RegisterRt — —
EX
S l t Add H—| H—H
S W RegDst —>
l Branch —D_
W MemRead
fa) 1| MemtoReg
4 —» Instr [31:26] ontrol MemWrite
ALUop
/ ALUsrc
No: RegWrite
be Y |
U L4 Read Instr [25:21] Read
. X ECEIEES register 1
j 1 Read
Instr [20:16] Read data 1
Instr [31:0]> || regkirs
Read
—»| Write data 2 H Address
N register
Instruction Read 1, L (s
memory data [1 i
Write U
|
data Registers L | write X
data Data
. memory
Instr [15:0] Sign- ALU
extend Control
16-32
Instr [5:0]
Instr [20:16]
H > OM
U i
Instr [15:11] X
T ﬂ
Forwarding
L unit
\F/ID ID/EX EX/MEM MEM/WB

CS@VT Computer Organization Il ©2005-2020 WD McQuain

