
Pipeline Stalls 1

Computer Organization IICS@VT ©2005-2020 WD McQuain

Unsimplified Datapath with Forwarding

Yes:

add

sub

and

or

slt

sw

No:

lw

beq

j

This design has:

• logic for synchronizing 

control signals and 

instructions

• forwarding logic

• no hazard detection.



Pipeline Stalls 2

Computer Organization IICS@VT ©2005-2020 WD McQuain

Load-Use Data Hazard

Consider the following sequence of instructions:

lw $t2, 20($t1)    # writes a value 

and  $t4, $t2, $t5   # reads that value

This hazard cannot be resolved by simple forwarding… why not?

and      lw

The value lw writes into $t2 is not available until lw completes the MEM stage, 
but and needs that value when it enters the EX stage, which is when lw enters 
the MEM stage.

QTP: why can this situation not occur if 
the writing instruction is R-type?



Pipeline Stalls 3

Computer Organization IICS@VT ©2005-2020 WD McQuain

Handling a Load-Use Hazard

If we can stall the execution of the using instruction for one cycle:

- value to be loaded to $t2 will be available in the MEM/WB buffer when the 
using instruction moves from ID to EX

- that value can be forwarded to the using instruction as the using instruction 
enters the EX stage

lw $t2, 20($t1)    # loads $t2

and  $t4, $t2, $t5   # uses $t2

and     STALL     lw

A load-use hazard requires delaying the execution of the using instruction until 
the result from the loading instruction can be made available to the using 
instruction.



Pipeline Stalls 4

Computer Organization IICS@VT ©2005-2020 WD McQuain

Detection

When can we detect the existence of a load-use hazard?

When we are decoding the using instruction --- if we remember right 

information about the preceding instruction.

What do we need to remember?

- whether the preceding instruction reads a value 

from data memory

- whether the preceding instruction writes a value to 

the register file

- whether that value is written to a register that 

current instruction reads from

ID/EX.MemRead

ID/EX.RegisterRt

IF/ID.RegisterRs

IF/ID.RegisterRt

Why do we not need to consider this question?



Pipeline Stalls 5

Computer Organization IICS@VT ©2005-2020 WD McQuain

Load-Use Hazard Detection

The loading instruction must be just that… so it writes to register rt.

There is a load-use hazard when

ID/EX.MemRead AND

( ( ID/EX.RegisterRt == IF/ID.RegisterRs) OR

( ( ID/EX.RegisterRt == IF/ID.RegisterRt) )

If detected… do what?

1 iff we're executing a load instruction

ID/EX shows register being written to;

IF/ID shows registers being read from



Pipeline Stalls 6

Computer Organization IICS@VT ©2005-2020 WD McQuain

How to Stall the Pipeline

Force all control values in ID/EX register to 

0

- when using reaches ID stage

- EX, MEM and WB do a nop

Prevent update of PC and IF/ID registers

- using instruction is decoded again

- instruction after the using instruction will be fetched again

- 1-cycle stall allows MEM to read data for lw

- can subsequently forward data to using instruction in EX stage

"If it isn't written down, it didn't happen."



Pipeline Stalls 7

Computer Organization IICS@VT ©2005-2020 WD McQuain

Trace

or       and      lw

lw $2, 20($1)     # 1

and $4, $2, $5     # 2

or $8, $2, $6     # 3

add $9, $4, $2     # 4

When and reaches the ID stage, the hazard involving $2 is detected.

All the control signals from the ID stage are set to 0 and the PC and IF/ID

interstage buffer are prevented from updating.



Pipeline Stalls 8

Computer Organization IICS@VT ©2005-2020 WD McQuain

Trace

or       and     STALL     lw

Because IF/ID is not updated, the and instruction is processed through ID

again.
Because PC is not updated, the or instruction is fetched again in the IF

stage.

Resetting the control signals and locking PC and IF/ID cause:

And:

- EX operates as usual (with all relevant signals 0)

- EX sends only 0 control signals to MEM for the next cycle

lw reaches the MEM stage and reads the value to be written to $2.

That value goes into MEM/WB.



Pipeline Stalls 9

Computer Organization IICS@VT ©2005-2020 WD McQuain

Trace

add      or      and     STALL     lw

The control signals for and (set in ID in the previous cycle) reach EX.

The value for $2 in MEM/WB is forwarded to the ALU in EX. 

Instructions preceding and proceed normally…

On the next cycle:

And:

- MEM operates as usual (with all relevant signals 0)

- MEM sends only 0 control signals to WB for the next cycle



Pipeline Stalls 10

Computer Organization IICS@VT ©2005-2020 WD McQuain

Stall/Bubble in the Pipeline

On the following cycles:

add      or      and     STALL

add      or      and

… and so on…

The execution time has increased by one clock cycle.



Pipeline Stalls 11

Computer Organization IICS@VT ©2005-2020 WD McQuain

Simplified Datapath with Hazard Detection



Pipeline Stalls 12

Computer Organization IICS@VT ©2005-2020 WD McQuain

Stall Details

Zeroes all 

control 

signals iff

Stall == 1

InhibitFetch == 1 

locks buffer and PC
Stall == 1 iff load-use hazard



Pipeline Stalls 13

Computer Organization IICS@VT ©2005-2020 WD McQuain

Unsimplified Datapath with Hazard Detection

Yes:

add

sub

and

or

slt

sw

lw

No:

beq

j


