B Unsimplified Datapath with Forwarding Pipeline Stalls 1
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" Load-Use Data Hazard Pipeline Stalls 2

Consider the following sequence of instructions:
1w st2, 20(Stl) # writes a wvalue
and St4, St2, St5 # reads that wvalue

This hazard cannot be resolved by simple forwarding... why not?

F ML D *H%H MEM-| | WB
and

1w

The value 1w writes into $t2 is not available until 1w completes the MEM stage,
but and needs that value when it enters the EX stage, which is when 1w enters
the MEM stage.

QTP: why can this situation not occur if
the writing instruction is R-type?
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Handling a Load-Use Hazard Pipeline Stalls 3

A load-use hazard requires delaying the execution of the using instruction until
the result from the loading instruction can be made available to the using
Instruction.

1w St2, 20(stl) # loads S$t2
and St4, St2, S$t5 # uses S$St2

F ML D *H%H MEM-| | WB

and STALL 1w

If we can stall the execution of the using instruction for one cycle:

- value to be loaded to st2 will be available in the MEM/WB buffer when the
using instruction moves from ID to EX

- that value can be forwarded to the using instruction as the using instruction
enters the EX stage
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I Detection Pipeline Stalls 4

When can we detect the existence of a load-use hazard?

When we are decoding the using instruction --- if we remember right
iInformation about the preceding instruction.

What do we need to remember?

- whether the preceding instruction reads a value |
from data memory

ID/EX.MemRead

- whether thatyalue is written to a register that

: . ID/EX.ReqisterRt
current instrudtion reads from

IF/ID.RegisterRs
— IF/ID.RegisterRt

Why do we not need to consider this question?

CS@VT Computer Organization Il ©2005-2020 WD McQuain



Load-Use Hazard Detection Pipeline Stalls 5

The loading instruction must be just that... so it writes to register rt.

There is a load-use hazard when _ _ _ _
— 1 iff we're executing a load instruction

V

ID/IEX.MemRead AND

( (ID/EX.RegisterRt == IF/ID.RegisterRs) OR
( (ID/EX.RegisterRt == IF/ID.RegisterRt) )

If detected... do what? _ _ _
ID/EX shows register being written to;

IF/ID shows registers being read from
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How to Stall the Pipeline Pipeline Stalls 6

“If it isn't written down, it didn't happen.” _ _

RegDst ‘

Force all control values in ID/EX register to
O [nstr [31:26]

- when using reaches ID stage
- EX, MEM and WB do a nop

Prevent update of PC and IF/ID registers
- using instruction is decoded again
- Instruction after the using instruction will be fetched again
- 1-cycle stall allows MEM to read data for 1w
- can subsequently forward data to using instruction in EX stage
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Trace

1w $2, 20($1)
and $4, $2, $5
or $8, S$2, $6
add $9, $4, S$2

- TH A L=

or and

Pipeline Stalls 7

MEM+H WB

When and reaches the ID stage, the hazard involving $2 is detected.

All the control signals from the ID stage are set to O and the PC and IF/ID
Interstage buffer are prevented from updating.
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Trace Pipeline Stalls 8

Resetting the control signals and locking PC and IF/ID cause:

et

or and STALL 1w

Because IF/ID is not updated, the and instruction is processed through ID

again.
Because PC is not updated, the or instruction is fetched again in the IF

stage.
And:
- EX operates as usual (with all relevant signals 0)
- EX sends only 0 control signals to MEM for the next cycle

1w reaches the MEM stage and reads the value to be written to $2.
That value goes into MEM/WB.
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Trace Pipeline Stalls 9

FE ML D % MEMH | wB

add or and STALL 1w

On the next cycle:

The control signals for and (set in ID in the previous cycle) reach EX.
The value for $2 in MEM/WB is forwarded to the ALU in EX.

And:
- MEM operates as usual (with all relevant signals 0)
- MEM sends only 0 control signals to WB for the next cycle

Instructions preceding and proceed normally...
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Stall/Bubble in the Pipeline Pipeline Stalls 10

-8 s e

On the following cycles:

add and STALL
IF *H ID *H%H MEM+H WB
add or and

...and soon...

The execution time has increased by one clock cycle.
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B Simplified Datapath with Hazard Detection Pipeline Stalls 11
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Stall Detalls

CS
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Pipeline Stalls 12
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Unsimplified Datapath with Hazard Detection Pipeline Stalls 13

IF: Instruction fetch ID: Instruction decode and register read EX: Execute/Address calc MEM: Memory Access WB: Write back
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