
Pipeline Forwarding 1

Computer Organization IICS@VT ©2005-2020 WD McQuain

Pipelined Control Overview

This design has:

• the correct logic for

synchronizing control

signals and instructions

• no forwarding logic

• no hazard detection.

Pipeline Forwarding 2

Computer Organization IICS@VT ©2005-2020 WD McQuain

Data Hazards in ALU Instructions

Tick 0: sub

Tick 1: and sub

Tick 2: and sub

Tick 3: and sub

Consider this sequence:

sub $2, $1, $3 # value for $2 known end of EX stage;

stored in $2 in WB stage

and $12, $2, $5 # enters ID stage when sub enters EX;

and needs $s2 when enters EX stage;

sub is in MEM stage by then;

$2 has not been written yet

Data hazard?

Pipeline Forwarding 3

Computer Organization IICS@VT ©2005-2020 WD McQuain

Data Hazards in ALU Instructions

Tick 0: sub

Tick 1: and sub

Tick 2: and sub

Tick 3: and sub

So this sequence leads to a data hazard involving $2:

sub $2, $1, $3

and $12, $2, $5

Can we resolve the hazard simply by forwarding?

But we must deliver the computed value at the right time; the next tick.

Yes!

And, that value will be sitting in the EX/MEM interstage buffer.

Pipeline Forwarding 4

Computer Organization IICS@VT ©2005-2020 WD McQuain

Detecting the Hazard

On the one hand, this is obvious. The first instruction writes a value into a

register that is subsequently used as input by the second instruction:

sub $2, $1, $3

and $12, $2, $5

We must know the register numbers for both instructions in order to detect the

hazard.

More precisely, we must know rd for the first instruction and both rs and rt for

the second instruction.

So, we must save those register numbers, via the interstage buffers.

Some notation will help us speak precisely about what's going on:

B.RegisterRX = register number for RX sitting in interstage pipeline buffer B

Pipeline Forwarding 5

Computer Organization IICS@VT ©2005-2020 WD McQuain

A Glance Ahead

Passing the register numbers:

rs (left operand)

register number

rt (right operand)

register number
rd (destination)

register number

Logic “box” that

manages

forwarding of

operands

Pipeline Forwarding 6

Computer Organization IICS@VT ©2005-2020 WD McQuain

A Glance Ahead

Passing the register numbers:

1

1: rd for instruction currently in EX stage

2: rd for instruction currently in MEM stage

3: rd for instruction currently in WB stage

2 3

They may all be different!

Pipeline Forwarding 7

Computer Organization IICS@VT ©2005-2020 WD McQuain

Detecting the Hazard

Now, for this sequence of instructions:

sub $2, $1, $3

and $12, $2, $5

So, we detect the hazard because we see that:

EX/MEM.RegisterRd == ID/EX.RegisterRs

Hence, we must forward the ALU output value from the EX/MEM interstage buffer
to the rs input to the ALU.

Apparently, we'll need to:

- pass (at least some) register numbers forward via the interstage buffers

- add a logic unit to compare those register numbers to detect hazards

- add data connections to support transferring data values being forwarded

- add some more selection logic (multiplexors)

Pipeline Forwarding 8

Computer Organization IICS@VT ©2005-2020 WD McQuain

Data Hazards in ALU Instructions

Now, consider this sequence:

sub $2, $1, $3 # value for $2 known in EX stage

and $12, $2, $5 # enters ID stage when sub enters EX

or $13, $6, $2 # enters ID stage when sub enters MEM;

$2 has not been written yet

Tick 0: sub

Tick 1: and sub

Tick 2: or and sub

Tick 3: or and sub

Tick 4: or and sub

Data hazard?

Pipeline Forwarding 9

Computer Organization IICS@VT ©2005-2020 WD McQuain

Data Hazards in ALU Instructions

Again, we have a data hazard:

sub $2, $1, $3 # value for $2 known in EX stage

and $12, $2, $5 # enters ID stage when sub enters EX

or $13, $6, $2 # enters ID stage when sub enters MEM;

Tick 0: sub

Tick 1: and sub

Tick 2: or and sub

Tick 3: or and sub

Tick 4: or and sub

Now, we must deliver the computed value after a delay of one tick, from MEM/WB.

Yes!

Pipeline Forwarding 10

Computer Organization IICS@VT ©2005-2020 WD McQuain

Detecting the Hazard

So, we detect the hazard because we see that:

MEM/WB.RegisterRd == ID/EX.RegisterRt

Hence, we must forward the ALU output value from the MEM/WB interstage
buffer to the rt* input to the ALU.

So… detecting data hazards is a multi-stage affair.

Again, we have a data hazard:

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

* QTP: why does this one go to the rt input?

Pipeline Forwarding 11

Computer Organization IICS@VT ©2005-2020 WD McQuain

Data Hazards in ALU Instructions

Now, consider this sequence:

sub $2, $1, $3 # value for $2 known in EX stage;

and $12, $2, $5 # enters ID stage when sub enters EX;

or $13, $6, $2 # enters ID stage when sub enters MEM;

add $14, $2, $2 # enters ID stage when sub enters WB;

$2 has not been written yet, but. . .

Tick 0: sub

Tick 1: and sub

Tick 2: or and sub

Tick 3: add or and sub

Tick 4: add or and sub

Data hazard?

Pipeline Forwarding 12

Computer Organization IICS@VT ©2005-2020 WD McQuain

Data Hazards in ALU Instructions

Now, there's almost a hazard… but not quite…

sub $2, $1, $3 # value for $2 known in EX stage;

and $12, $2, $5 # enters ID stage when sub enters EX;

or $13, $6, $2 # enters ID stage when sub enters MEM;

add $14, $2, $2 # enters ID stage when sub enters WB;

Tick 0: sub

Tick 1: and sub

Tick 2: or and sub

Tick 3: add or and sub

Tick 4: add or and sub

Tick 5: add or and sub
Now, we deliver the computed value to the register file in the first

half of tick 4, and it's not read until the second half of that tick!

Pipeline Forwarding 13

Computer Organization IICS@VT ©2005-2020 WD McQuain

Data Hazards in ALU Instructions

Now, consider this sequence:

sub $2, $1, $3 # value for $2 known in EX stage;

and $12, $2, $5 # enters ID stage when sub enters EX;

or $13, $6, $2 # enters ID stage when sub enters MEM;

add $14, $2, $2 # enters ID stage when sub enters WB

sw $15, 100($2) # enters ID stage after sub is done

Tick 0: sub

Tick 1: and sub

Tick 2: or and sub

Tick 3: add or and sub

Tick 4: sw add or and sub

Tick 5: sw add or and

Data hazard?

Pipeline Forwarding 14

Computer Organization IICS@VT ©2005-2020 WD McQuain

Detecting the Need to Forward

Here's what we (seem to) know so far:

ALU-related data hazards occur when

EX/MEM.RegisterRd = ID/EX.RegisterRs

EX/MEM.RegisterRd = ID/EX.RegisterRt

MEM/WB.RegisterRd = ID/EX.RegisterRs

MEM/WB.RegisterRd = ID/EX.RegisterRt

However, we have overlooked (at least) one thing…

Fwd from

EX/MEM

pipeline reg

Fwd from

MEM/WB

pipeline reg

Pipeline Forwarding 15

Computer Organization IICS@VT ©2005-2020 WD McQuain

Detecting the Need to Forward

We don't need to forward unless the forwarding (earlier) instruction does actually

write a value to a register:

EX/MEM.RegWrite == 1

MEM/WB.RegWrite == 1

And we only forward if Rd for that instruction is not $zero:

EX/MEM.RegisterRd != 0

MEM/WB.RegisterRd != 0

Pipeline Forwarding 16

Computer Organization IICS@VT ©2005-2020 WD McQuain

Datapath Change: ALU Operand Selection

Value from register fetch in ID stage

Value from WB stage

Value from ALU execution

Forwarding unit selects

among three candidates for

the register operands.

Pipeline Forwarding 17

Computer Organization IICS@VT ©2005-2020 WD McQuain

Datapath Change: ALU Operand Selection

Pipeline Forwarding 18

Computer Organization IICS@VT ©2005-2020 WD McQuain

Forwarding Paths

rd # from MEM stage,

EX/MEM.RegisterRd

rd # from WB stage,

MEM/WB.RegisterRd

Select source

for left

operand rs

Select source

for right

operand rt

Possible rd

numbers

Select correct

rd number

rs and rt for the

instruction in the

EX stage,

ID/EX.RegisterR

s

ID/EX.RegisterRt

Pipeline Forwarding 19

Computer Organization IICS@VT ©2005-2020 WD McQuain

Conditions for EX Hazard

If (EX/MEM.RegWrite and

EX/MEM.RegisterRd != 0 and

EX/MEM.RegisterRd == ID/EX.RegisterRs)

then

ForwardA = 10

If (EX/MEM.RegWrite and

EX/MEM.RegisterRd != 0 and

EX/MEM.RegisterRd == ID/EX.RegisterRt)

then

ForwardB = 10

QTP: could BOTH occur with

respect to the same

instruction?

Pipeline Forwarding 20

Computer Organization IICS@VT ©2005-2020 WD McQuain

Conditions for MEM Hazard

If (MEM/WB.RegWrite and

MEM/WB.RegisterRd != 0 and

MEM/WB.RegisterRd == ID/EX.RegisterRs)

then

ForwardA = 01

If (MEM/WB.RegWrite and

MEM/WB.RegisterRd != 0 and

MEM/WB.RegisterRd == ID/EX.RegisterRt)

then

ForwardB = 01

QTP: could BOTH an EX hazard and a

MEM hazard occur with respect

to the same instruction?

Pipeline Forwarding 21

Computer Organization IICS@VT ©2005-2020 WD McQuain

Double Data Hazard

Consider the sequence:

add $1,$1,$2

sub $1,$1,$3

or $1,$1,$4

Tick 2: or sub add

Tick 3: ... or sub add

Both hazards occur… which

value do we want to

forward?

Pipeline Forwarding 22

Computer Organization IICS@VT ©2005-2020 WD McQuain

Double Data Hazard

Consider the sequence:

add $1,$1,$2

add $1,$1,$3

add $1,$1,$4

Revise MEM hazard condition:

– Only forward if EX hazard condition is not true

Pipeline Forwarding 23

Computer Organization IICS@VT ©2005-2020 WD McQuain

Revised Conditions for MEM Hazard

If (MEM/WB.RegWrite and

MEM/WB.RegisterRd != 0 and

not (EX/MEM.RegWrite and

EX/MEM.RegisterRd != 0 and

EX/MEM.RegisterRd == ID/EX.RegisterRs) and

MEM/WB.RegisterRd == ID/EX.RegisterRs)

then

ForwardA = 01

If (MEM/WB.RegWrite and

MEM/WB.RegisterRd != 0 and

not (EX/MEM.RegWrite and

EX/MEM.RegisterRd != 0 and

EX/MEM.RegisterRd == ID/EX.RegisterRt) and

MEM/WB.RegisterRd == ID/EX.RegisterRt)

then

ForwardB = 01

Pipeline Forwarding 24

Computer Organization IICS@VT ©2005-2020 WD McQuain

MEM Hazard Breakdown

If ((MEM/WB.RegWrite and

MEM/WB.RegisterRd != 0)

and

not (EX/MEM.RegWrite and

EX/MEM.RegisterRd != 0 and

EX/MEM.RegisterRd == ID/EX.RegisterRs)

and

MEM/WB.RegisterRd == ID/EX.RegisterRs)

then

ForwardA = 01

Instruction leaving MEM

stage DOES write a

value

Instruction leaving EX

stage DOES NOT write a

value

OR

it doesn’t write to Rs

register of instruction

leaving ID stage

Instruction leaving MEM

stage DOES write a

value to the Rs register

of instruction leaving ID

stage

Pipeline Forwarding 25

Computer Organization IICS@VT ©2005-2020 WD McQuain

Simplified Datapath with Forwarding

Pipeline Forwarding 26

Computer Organization IICS@VT ©2005-2020 WD McQuain

Unsimplified Datapath with Forwarding

Yes:

add

sub

and

or

slt

sw

No:

lw

beq

j

This design has:

• logic for synchronizing

control signals and

instructions

• forwarding logic

• no hazard detection.

