
Synchronizing 1

Computer Organization IICS@VT ©2005-2020 WD McQuain

Current Design

Synchronizing 2

Computer Organization IICS@VT ©2005-2020 WD McQuain

Pipeline Timing Issues

Consider executing:

add $t2, $t1, $t0 # needs MemWrite = 0

sub $t3, $t1, $t0 # needs MemWrite = 0

or $t4, $t1, $t0 # needs MemWrite = 0

sw $t2, 0($t0) # needs MemWrite = 1

0 1 2 3 4

time

addsuborsw...

Synchronizing 3

Computer Organization IICS@VT ©2005-2020 WD McQuain

Pipeline Timing Issues

What happens during cycle 4? Among other things…

- sw reaches the ID stage, and Control sets MemWrite to 1

- so, a memory write will occur while sub is in the MEM stage

- and that’s bad news…

0 1 2 3 4

time

addsuborsw...

Synchronizing 4

Computer Organization IICS@VT ©2005-2020 WD McQuain

Pipeline Timing Issues

What needs to happen instead?

- the value of MemWrite that goes with sw…

- … needs to travel forward, stage to stage as sw does

0 1 2 3 4

time

addsuborsw...

0 1 2 3 4

time

suborsw......

Synchronizing 5

Computer Organization IICS@VT ©2005-2020 WD McQuain

Pipeline Timing Issues

What needs to happen instead?

- the value of MemWrite that goes with sw…

- … needs to travel forward, stage to stage as sw does

So how do we make this happen?

0 1 2 3 4

time

orsw.........

Synchronizing 6

Computer Organization IICS@VT ©2005-2020 WD McQuain

Adding Buffers

Put storage buffers between adjacent stages:

Control writes/reads on these buffers with the clock signal.

Read values entering a stage from the “inbound” buffer.

Write values exiting a stage to the “outbound” buffer.

So no signal (or data value) arrives before its time…

outbound

inbound

Synchronizing 7

Computer Organization IICS@VT ©2005-2020 WD McQuain

What now?

We have an idea: put buffers between adjacent stages and use those buffers to

synchronize the operation of the pipeline stages

Are we sure we are handling all control signals properly… for every instruction?

Are there any values, other than control signals that must be passed through the

interstage buffers?

Signals and values:

 may move forward (from lower-numbered to higher-numbered stages)

 can they ever move backward?

 should they ever bypass the interstage buffers?

We will pick a particular instruction and consider its execution in detail…

Synchronizing 8

Computer Organization IICS@VT ©2005-2020 WD McQuain

IF Stage for LW

PC+4 is computed,

stored back into the PC,

also stored in the IF/ID buffer

although it will not be needed in a

later stage for LW

Instruction word is fetched from

memory,

and stored in the IF/ID buffer

because it will be needed in the next

stage.

Write into the buffer at

end of clock cycle

Branch target address

Signal from AND

Synchronizing 9

Computer Organization IICS@VT ©2005-2020 WD McQuain

ID Stage for LW

PC+4 is passed forward to

ID/EX buffer...

Bits of load instruction are

taken from IF/ID buffer,

while

new instruction is being

fetched back in stage 1.

16-bit field is fetched from IF/ID

buffer, then sign-extended, then

stored in the ID/EX buffer for

use in a later stage.

Read register #1 and #2

contents are fetched and stored

in ID/EX buffer until needed in

next stage… #2 won't be

needed.

Read from the buffer

at beginning of cycle

Control signals passed forward.

Some to be used in later stages.

Some to be passed back here.

Old design:

Set write register in ID stage,

but use from WB stage.

That doesn't work now…

Synchronizing 10

Computer Organization IICS@VT ©2005-2020 WD McQuain

EX Stage for LW

PC+4 is taken from ID/EX

buffer and added to branch

offset…

Read register #1 contents

are taken from ID/EX buffer

and provided to ALU.

Read register #2 is passed

forward to EX/MEM buffer,

for possible use in later

stage… but won't be

needed.

Computed branch target

address is stored in

EX/MEM buffer to await

decision in next stage... but

won't be needed.

ALU result is stored in

EX/MEM buffer for use as

memory address in next

stage.

Extended 16-bit literal is

provided to ALU as second

operand

Zero signal is stored in the

EX/MEM buffer, but won't

be needed.

Write

register #

Synchronizing 11

Computer Organization IICS@VT ©2005-2020 WD McQuain

MEM Stage for LW

Zero line taken from

EX/MEM buffer for

branch control logic

in this stage…

ALU result is taken from

EX/MEM buffer and

passed to Address port of

data memory.

Read register #2 contents

taken from EX/MEM buffer

and passed to Write data

port of data memory.

ALU result also stored in

MEM/WB buffer for

possible use in last stage…

Value on Read data port of

data memory is stored in

MEM/WB buffer, awaiting

decision in last stage..

Branch target address and signal from

AND going back to MUX in IF stage

MemRead

Write register #

Synchronizing 12

Computer Organization IICS@VT ©2005-2020 WD McQuain

WB Stage for LW

For load instructions, value

from data memory is

selected and passed back

to register file.

The RegWrite signal is the

one that goes with the load

instruction (because it was

sent forward through the

interstage buffers). MemtoReg

Write register port is

now seeing the register

number for the load

instruction.

RegWrite

Write register #

Data to load

Synchronizing 13

Computer Organization IICS@VT ©2005-2020 WD McQuain

Current Design

Here’s our revised configuration including the buffers:

Synchronizing 14

Computer Organization IICS@VT ©2005-2020 WD McQuain

What now?

Would considering the execution of a different instruction yield new insights?

We will consider a similar instruction next: SW

Now, the IF stage is the same for all instructions, so we'll ignore it.

Synchronizing 15

Computer Organization IICS@VT ©2005-2020 WD McQuain

EX Stage for SW

Almost the same as for LW…

Read register #2 is passed

forward to EX/MEM buffer,

for use in later stage… for

SW this will be needed.

MemWrite

Synchronizing 16

Computer Organization IICS@VT ©2005-2020 WD McQuain

MEM Stage for SW

Read register #2 contents

taken from EX/MEM buffer

and passed to Write data

port of data memory.

Almost the same as for LW…

MemWrite
ALU result taken from EX/MEM

buffer and passed to Address

port of data memory.

Synchronizing 17

Computer Organization IICS@VT ©2005-2020 WD McQuain

WB Stage for SW

For SW instructions, no

value will be written to the

register file… doesn't really

matter which value we

send back…

Not relevant for SW …

Synchronizing 18

Computer Organization IICS@VT ©2005-2020 WD McQuain

Questions to Ponder

Can you repeat this analysis for other sorts of instructions, identifying in

each stage what's relevant and what's not?

How much storage space does each interstage buffer need? Why?

Could adding interstage buffers affect the clock cycle? Why?

Synchronizing 19

Computer Organization IICS@VT ©2005-2020 WD McQuain

Summary

Here’s our preliminary configuration for the buffers:

