
Pipeline 1

Computer Organization IICS@VT ©2005-2020 WD McQuain

Recap: the Basic Idea

Can we operate the stages independently, using an earlier one to begin the next

instruction before the previous instruction has completed?

We have 5 stages,

which will mean that on

any given cycle up to 5

different instructions will

be in various points of

execution.

Pipeline 2

Computer Organization IICS@VT ©2005-2020 WD McQuain

Hazards

Situations that prevent starting the next instruction in the next cycle

Structural hazards

– A required resource is busy

Data hazard

– Need to wait for previous instruction to complete its data
read/write

Control hazard

– Deciding on control action depends on previous instruction

Pipeline 3

Computer Organization IICS@VT ©2005-2020 WD McQuain

Structural Hazards

Conflict for use of a resource

In MIPS pipeline with a single memory

– Load/store both require memory access

– So does instruction fetch

– Instruction fetch would have to stall for that cycle

Hence, MIPS pipeline require separate instruction/data memories

– Or separate instruction/data caches

– Or dual-ported memories

For example:

Pipeline 4

Computer Organization IICS@VT ©2005-2020 WD McQuain

Data Hazards

An instruction depends on completion of a write to a register by a
previous instruction

add $s0, $t0, $t1 // writes $s0 from WB stage

sub $t2, $s0, $t3 // needs value in ID stage

2-stage stall

Pipeline 5

Computer Organization IICS@VT ©2005-2020 WD McQuain

Forwarding (aka Bypassing)

Use result when it is computed

– Don’t wait for it to be stored in a register

– Requires extra connections in the datapath (& more control logic?)

no stall

Pipeline 6

Computer Organization IICS@VT ©2005-2020 WD McQuain

Load-Use Data Hazard

Can’t always avoid stalls by forwarding

– If value not computed when needed, can’t forward backward in time!

1-stage stall

Pipeline 7

Computer Organization IICS@VT ©2005-2020 WD McQuain

Code Scheduling to Avoid Stalls

Reorder code to avoid use of load result in the next instruction

C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

Who reorders the code?

Pipeline 8

Computer Organization IICS@VT ©2005-2020 WD McQuain

Control Hazards: beq

Branch determines flow of control

Fetching next instruction depends on branch outcome

Register comparison done in EX stage

MUX selection done in MEM stage

Branch target address computed in EX stage

What instruction do we fetch when BEQ is in ID stage?

Pipeline 9

Computer Organization IICS@VT ©2005-2020 WD McQuain

Control Hazards: beq

How can we deal with BEQ?

Stall until we know whether (& where) to branch?

Make the decision and calculate the address earlier?

Guess whether the branch will be taken?

Pipeline 10

Computer Organization IICS@VT ©2005-2020 WD McQuain

Stall on Branch

Wait until branch outcome determined before fetching next instruction

How many cycles does this cost?

Pipeline 11

Computer Organization IICS@VT ©2005-2020 WD McQuain

Early Decision

What new hardware would be needed to decide earlier?

Must compare the registers before the EX stage

Must compute the branch target address before the EX stage

Can we know what to do by the time BEQ enters the ID stage?

Pipeline 12

Computer Organization IICS@VT ©2005-2020 WD McQuain

Branch Prediction

Longer pipelines can’t readily determine branch outcome early

– Stall penalty becomes unacceptable

Predict outcome of branch

– Only stall if prediction is wrong

In MIPS pipeline

– Can predict branches will not be taken

– Fetch sequential instruction after branch, with no delay

Pipeline 13

Computer Organization IICS@VT ©2005-2020 WD McQuain

MIPS with Predict-Not-Taken

Prediction

correct

Prediction

incorrect

Pipeline 14

Computer Organization IICS@VT ©2005-2020 WD McQuain

Pipeline Summary

Pipelining improves performance by increasing instruction throughput

– Executes multiple instructions in parallel

– Each instruction has the same latency

Subject to hazards

– Structure, data, control

Instruction set design affects complexity of pipeline implementation

