M Pipelining Analogy Intro Pipeline 1

Pipelined laundry: overlapping execution
Parallelism improves performance

Four loads:
- serial throughput:

Time —_&PM 7 8 9 10 11 12 1 2 AM 0.5 load/hr

T -
Task
order e

A .%. . - pipelined throughput:

g @ gas 1.14 load/hr

C

&=

P 8Os - speedup:
Time __6PM 7 8 9 1|o 1|1 1|2 ? 2/|W| 8/3.5=23
order

» BO=M

> B0

c - [@=]

0 8o

Non-stop speedup:

2n/(0.5n +1.5)=4

CS@VT Computer Organization Il ©2005-2020 WD McQuain

Basic Idea Intro Pipeline 2

What if we think of the simple datapath as a linear sequence of stages?

IF: Instruction fetch - ID: Instruction decode and register read ® EX: Execute/Address calc ® MEM: Memory Access " WB: Write back
L " ™ n

We have 5 stages,

which will mean
that on any given
cycleupto 5
RegDst dlﬁerent
. et . : . instructions will be
" \ MemRead = u - H H H
: Control vemenas - : in various points of
4 —| Instruction [31:26] - [] = w 0
. , MemWrite = = = eXGCUUOn.
0 l ALUop . 0
/ ALUsrc -
RegWrite
L}
U Instruction [25:21] Read []] U
>PCl Read
ajc?ress U register 1 L] = L
- Read | ® -
n 2 . L
- . Instruction [20:16] Read data 1 : Sz T . -
Instruction N register 2 .
31:0 L] L
Bro] [- OM Read | = P ALU . .
O u Write data2| = O,q ﬁel_sﬂlt & Address -
) " Instruction [15:11] | X register . u = "
Instruction L 1 - % - Read [f
memory " a | &l - data " o
L} Write n [U U
- | data Registers | = =| | write C Ox
. L] u["| data Data "
n " ™ L
’ memor
Instruction [15:0] Sign- = ALU =] -
extend L Control n
16-32 n
U L]
Instruction [5:0] " ALUOp
L]

Can we operate the stages independently, using an earlier one to begin the next
Instruction before the previous instruction has completed?

CS@VT Computer Organization Il ©2005-2020 WD McQuain

B MIPS 5-stage Pipeline

Stage

EX
MEM

WB

CS@VT

Actions

Instruction fetch from memory

Instruction decode & register read

Execute operation or calculate address

Access memory operand

Write result back to register

Computer Organization Il

Intro Pipeline 3

For

all

decode for all;
read for all but j

all but 7
1w, sw

1w, R-type

©2005-2020 WD McQuain

Timing Assumptions Intro Pipeline 4

Assume time for stages is
100ps for register read or write
200ps for other stages

Instruction | Instruction | Register ALU Memory Register Total

fetch read operation access write time
\WY 200ps 100 ps 200ps 200ps 100 ps 800ps
Sw 200ps 100 ps 200ps 200ps 700ps
R-format 200ps 100 ps 200ps 100 ps 600ps
beq 200ps 100 ps 200ps 500ps
j ?7? ?7? ?7? ?7? ?7? ?7?

QTP: how does j fitin here?

CS@VT Computer Organization Il ©2005-2020 WD McQuain

Pipeline Timing Details

Each stage is allotted 200ps, and so that is the cycle time.

That leads to "gaps" in stages 2 and 5:

Time

Intro Pipeline 5

1000

IF

ID g—»MEM

WB

We stipulate that register writes take place in the first half of a cycle and that
register reads take place in the second half of a cycle.

QTP: why?

CS@VT

Computer Organization Il

©2005-2020 WD McQuain

B Non-pipelined Performance

Single-cycle (T.= 800ps)

Program
execution

200 400 600 800

1000

Intro Pipeline ©

1200 1400 1600

Time
order
(in instructions)

Instruction
fetch

Data
access

lw $1, 100($0) Reg| ALU Reg

1800

lw $2, 200($0)

Instruction
fetch

800 ps

Reg

Data
access

ALU

Reg

lw $3, 300($0)

Total time to execute 3 instructions would be 2400 ps.

Total time to execute N instructions would be 800N ps.

CS@VT Computer Organization Il

Instruction
fetch

-—

800 ps

800 ps

s —»

©2005-2020 WD McQuain

Pipelined Performance

Pipelined (T.= 200ps)

Program

Intro Pipeline 7

execution T 200 400 600 800 1000 1200 1400
Order T T T T T T T
(in instructions)

w $1,100(60)| | reg| A | D52 g

w $2,200(30) 200 ps | " [Reg| ALU | P |Reg

lw $3, 300($0) 200 ps | "t |Reg| AU | P22 IReg

200 ps 200 ps 200 ps 200 ps 200 ps

Total time to execute these 3 instructions would be 1400 ps.

Speedup would be 2400/1400 or about 1.7.

Total time to execute N (similar) instructions would be 800 + 200N ps.

Speedup would be 800N/(800+200N) or about 4 for large N.

CS@VT Computer Organization Il

©2005-2020 WD McQuain

Pipeline Speedup Intro Pipeline 8

If all stages are balanced (i.e., all take the same time):

Time between instr completions

non— pipelined

Time between instr completions ... =

Number of stages

If not balanced, speedup is less

Speedup is due to increased throughput
Latency (time for each instruction) does not decrease
In fact...

Note: the goal here is to improve overall performance, which is often not the
same as optimizing the performance of any particular operation.

CS@VT Computer Organization Il ©2005-2020 WD McQuain

Pipelining and ISA Design Intro Pipeline 9

MIPS32 ISA was designed for pipelining:

32-bit machine instructions (uniformity)
- easier to fetch and decode in one cycle
- vs x86: machine instructions vary from 1 to 17 bytes

Few, regular instruction formats
- can decode opcode and read registers in same clock cycle

Load/store addressing
- can calculate address in one pipeline stage...
- ... and access data memory in the next pipeline stage

Alignment requirements for memory operands
- 4-byte accesses must be at “word” addresses
- memory access takes only one clock cycle

QTP: what if we had to support:
add 4($t0), 12(Stl), -8(St2)

CS@VT Computer Organization Il ©2005-2020 WD McQuain

" Issues

But... is there anything wrong with our thinking?

IF: Instruction fetch

ID: Instruction decode and register read

EX: Execute/Address calc

Intro Pipeline 10

MEM: Memory Access " WB: Write back
n

L—pc

4 —

Read

CS@VT

address

Instruction
[31:0]

Instruction
memory

| |
n
. n
» | |
. | |
] "
. | |
[] U "
[] U "
[] L) "
RegDst . - .
[] U "
[] U "
Branch u - "
MemRead u g "
Control| Memtoreg = . :
Instruction [31:26] MemWrite U - .
n
ALUop " -
LJ L] "
/ ALUSrc . 0 =
RegWrite ™ [] .
[] U "
[] U "
Instruction [25:21] Read L] " "
register 1 L] " "
Read | ® " -
. i u
Instruction [20:16] Read data 1 : Zero : 0
register 2]
™ -
A Read | = A ALU - "
M 0 ALU]
o Write data 2| = M result = Address
Instruction [15:11] | X register = U U -
| - 5% 0 Read L] ¢
o | &l . data "H M
Write] U " S
—
data Registers | = u| [write . OX
= =| |data Data "
[] U "
. memory
Instruction [15:0] Sign- " ALU " D
extend L] Control = "
16-32 . . =
[] U "
Instruction [5:0] U ALUOp " .
w L] -
w L]

Computer Organization Il

©2005-2020 WD McQuain

M Issues Intro Pipeline 11
What about handling:
beqg $s0, S$sl, exit
3 exit
1w $s0, 12($sl)
add $s3, $s0, s$sl

add Ss4, $s0, S$sb

Are there any other issues...?

CS@VT Computer Organization Il ©2005-2020 WD McQuain

