
Intro Pipeline 1

Computer Organization IICS@VT ©2005-2020 WD McQuain

Pipelining Analogy

Pipelined laundry: overlapping execution

– Parallelism improves performance

Non-stop speedup:

2n/(0.5n + 1.5) ≈ 4

Four loads:

- serial throughput:

0.5 load/hr

- pipelined throughput:

1.14 load/hr

- speedup:

8/3.5 ≈ 2.3

Intro Pipeline 2

Computer Organization IICS@VT ©2005-2020 WD McQuain

Basic Idea

What if we think of the simple datapath as a linear sequence of stages?

Can we operate the stages independently, using an earlier one to begin the next

instruction before the previous instruction has completed?

We have 5 stages,

which will mean

that on any given

cycle up to 5

different

instructions will be

in various points of

execution.

Intro Pipeline 3

Computer Organization IICS@VT ©2005-2020 WD McQuain

MIPS 5-stage Pipeline

Stage Actions For

IF Instruction fetch from memory all

ID Instruction decode & register read decode for all;

read for all but j

EX Execute operation or calculate address all but j

MEM Access memory operand lw, sw

WB Write result back to register lw, R-type

Intro Pipeline 4

Computer Organization IICS@VT ©2005-2020 WD McQuain

Timing Assumptions

Assume time for stages is

– 100ps for register read or write

– 200ps for other stages

Instruction Instruction

fetch

Register

read

ALU

operation

Memory

access

Register

write

Total

time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

j ?? ?? ?? ?? ?? ??

QTP: how does j fit in here?

Intro Pipeline 5

Computer Organization IICS@VT ©2005-2020 WD McQuain

Pipeline Timing Details

Each stage is allotted 200ps, and so that is the cycle time.

That leads to "gaps" in stages 2 and 5:

We stipulate that register writes take place in the first half of a cycle and that

register reads take place in the second half of a cycle.

QTP: why?

Intro Pipeline 6

Computer Organization IICS@VT ©2005-2020 WD McQuain

Non-pipelined Performance

Single-cycle (Tc= 800ps)

Total time to execute 3 instructions would be 2400 ps.

Total time to execute N instructions would be 800N ps.

Intro Pipeline 7

Computer Organization IICS@VT ©2005-2020 WD McQuain

Pipelined Performance

Pipelined (Tc= 200ps)

Total time to execute these 3 instructions would be 1400 ps.

Total time to execute N (similar) instructions would be 800 + 200N ps.

Speedup would be 2400/1400 or about 1.7.

Speedup would be 800N/(800+200N) or about 4 for large N.

Intro Pipeline 8

Computer Organization IICS@VT ©2005-2020 WD McQuain

Pipeline Speedup

If all stages are balanced (i.e., all take the same time):

If not balanced, speedup is less

Speedup is due to increased throughput

– Latency (time for each instruction) does not decrease

– In fact…

Note: the goal here is to improve overall performance, which is often not the

same as optimizing the performance of any particular operation.

Time between instr completions
Time between instr completions

Number of stages

non pipelined

pipelined




Intro Pipeline 9

Computer Organization IICS@VT ©2005-2020 WD McQuain

Pipelining and ISA Design

QTP: what if we had to support:

add 4($t0), 12($t1), -8($t2)

MIPS32 ISA was designed for pipelining:

32-bit machine instructions (uniformity)

- easier to fetch and decode in one cycle

- vs x86: machine instructions vary from 1 to 17 bytes

Few, regular instruction formats

- can decode opcode and read registers in same clock cycle

Load/store addressing

- can calculate address in one pipeline stage…

- … and access data memory in the next pipeline stage

Alignment requirements for memory operands

- 4-byte accesses must be at “word” addresses

- memory access takes only one clock cycle

Intro Pipeline 10

Computer Organization IICS@VT ©2005-2020 WD McQuain

Issues

But… is there anything wrong with our thinking?

Intro Pipeline 11

Computer Organization IICS@VT ©2005-2020 WD McQuain

Issues

What about handling:

beq $s0, $s1, exit

j exit

lw $s0, 12($s1)

add $s3, $s0, $s1

add $s4, $s0, $s5

Are there any other issues…?

