
Datapath Design 1

Computer Organization IICS@VT ©2005-2020 WD McQuain

Introduction

We will examine a simplified MIPS implementation first, and then produce a more
realistic pipelined version.

A simple, representative subset of machine instructions, shows most aspects:

- Memory reference: lw, sw

- Arithmetic/logical: add, sub, and, or, slt

- Transfer of control: beq, j

R functshamtrdrtrsop

16-bit immediatertrsop

26-bit immediateop

I

J

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Datapath Design 2

Computer Organization IICS@VT ©2005-2020 WD McQuain

Instruction Execution

I PC instruction memory, fetch instruction

II Register numbers register file, read registers to get operand(s)

III Depending on instruction class

- May use ALU to calculate needed value

- R-type: need result of specified operation

- Load/store:need memory address to be read from/written to

- Branch: need to compare registers AND need the branch target address

- May access data memory

- Load/store: access data memory to read/write value

- Set address for next instruction fetch: PC branch target OR PC + 4 OR jump

target

Datapath Design 3

Computer Organization IICS@VT ©2005-2020 WD McQuain

Executing Instruction Fetch

Here's what we need for sequential fetches (no beq or j):

32-bit

register

storing

address of

instruction to

fetch next

increment by

4 for next

instruction

(for now)

assume there

are separate

storage for

instructions and

data (for now)

Datapath Design 4

Computer Organization IICS@VT ©2005-2020 WD McQuain

Executing R-Format Instructions

functshamtrdrtrsop

Register

numbers

Operation

results

Register file

Operands

Read two operands from register file

Use ALU to perform the arithmetic/logical operation

Write the result to a register

Control

GPR[rd] = GPR[rs] funct GPR[rt]

Datapath Design 5

Computer Organization IICS@VT ©2005-2020 WD McQuain

Executing R-Format Instructions

functshamtrdrtrsop

rs and rt

specify where

operands are

rd specifies

where result

goes

ALU applies

specified

operation to

operands

ALU Control

sets ALU to

correct

operation
add, sub, and, or, slt

ALU result goes

to register file

GPR[rd] = GPR[rs] funct GPR[rt]

Control tells ALU

Control to use the

funct bits… and

sets RegWrite to 1

Datapath Design 6

Computer Organization IICS@VT ©2005-2020 WD McQuain

Executing Load Instructions

Read register operand

Calculate the address to be read using register operand and 16-bit offset from
instruction

- Use ALU, but sign-extend offset

. . .
16-bit immediatertrsop

GPR[rt] = Mem[GPR[rs] + imm]

Datapath Design 7

Computer Organization IICS@VT ©2005-2020 WD McQuain

Executing Load Instructions

16-bit immediatertrsop

. . .
Read memory and update register

GPR[rt] = Mem[GPR[rs] + imm]

Datapath Design 8

Computer Organization IICS@VT ©2005-2020 WD McQuain

Executing Load Instructions

16-bit immediatertrsop

rs specifies

where

operand is

16-bit immediate

is extended

rt specifies

where

result goes

lw

GPR[rt] = Mem[GPR[rs] + imm]

Control tells ALU Control to add

operands and sets RegWrite to 1

and MemRead to 1

Value is

retrieved from

memory

location and

sent to

register file

ALU computes

address to read

Datapath Design 9

Computer Organization IICS@VT ©2005-2020 WD McQuain

Executing Store Instructions

16-bit immediatertrsop

rs specifies

where

operand is

16-bit immediate

is extended

rt specifies

where data

comes

from

sw

Mem[GPR[rs] + imm] = GPR[rt]

Control tells ALU Control to add

operands, and sets MemWrite to 1

ALU computes

address to read

Value is retrieved

from register file and

sent to memory

Datapath Design 10

Computer Organization IICS@VT ©2005-2020 WD McQuain

Unifying the Designs

In order to produce a complete datapath design, we must identify and deal with

any conflicts.

First, consider the specification of the register numbers supplied to the register file.

They come from the current instruction, but using which bits?

Read reg 1 Read reg 2 Write reg

R-type 25:21 20:16 15:11

load 25:21 not used 20:16

store 25:21 20:16 not used

We have a conflict regarding the write register.

To resolve the conflict, we must be able to select one set of bits for R-type

instructions and a different set of bits for the load instructions… how do we make a

selection in hardware?

OK OK Conflict

Datapath Design 11

Computer Organization IICS@VT ©2005-2020 WD McQuain

Unifying the Designs

We also have a conflicts regarding the source of the write data and the source of

the right (lower) operand to the ALU:

Write data source Right operand

source

R-type ALU output register file

load Data memory sign-extend

store not used sign-extend

To resolve these conflicts, we must be able to:

- send the ALU output to the register file for R-type instructions, but send the

data read from the memory unit to the register file for load instructions

- send the data read from the register file to the ALU for R-type instructions, but

send the output from the sign-extender to the ALU for load and store

instructions

Conflict Conflict

Datapath Design 12

Computer Organization IICS@VT ©2005-2020 WD McQuain

Unified R-type/Load/Store Datapath

By adding three multiplexors, we can resolve the conflicts

that we have identified and produce a design that will

(almost) handle the R-type, load and store instructions we

are considering.

Multiplexor to

select write

register number

Multiplexor to select right

operand to ALU

Multiplexor to select

write data for register file

add, sub, and, or, slt, lw, sw

Datapath Design 13

Computer Organization IICS@VT ©2005-2020 WD McQuain

Analyzing the Control Signals

We've identified quite a few necessary control signals in our design.

Which ones are two-valued? Do any require more than two values?

How should they be set?

The datapath cannot operate correctly unless every control signal is managed

properly.

Two things to remember:

- Every line always carries a value. We may not know (or care) what it is in

some cases. But there is always a value there.

- It doesn't matter what value a line carries if that value is never stored or used

to make a decision. (Hence, we will find that we have don't-care conditions.)

Datapath Design 14

Computer Organization IICS@VT ©2005-2020 WD McQuain

Register File Control

R-type and load instructions require writing a value into a register, but the store

instruction does not.

Writing a value modifies the state of the system, so it is not a don't-care.

So, we must manage the RegWrite signal accordingly:

RegWrite

R-type 1

load 1

store 0

Value at Write data is written to the

Write register iff RegWrite is 1.

Datapath Design 15

Computer Organization IICS@VT ©2005-2020 WD McQuain

Data Memory Control

MemRead

- must be 1 for load instructions, since they copy a value from memory to a

register

- might be a don't-care for R-type and store instructions… why? If not, should

be 0.

MemWrite

- must be 1 for store instructions, since they copy a value from a register to

memory

- must be 0 for R-type and load instructions; otherwise they could modify a

memory value that should not be changed MemRead MemWrite

R-type ? 0

load 1 0

store ? 1

Datapath Design 16

Computer Organization IICS@VT ©2005-2020 WD McQuain

Multiplexor Control

RegDst

- must be 0 for load instructions

- must be 1 for R-type instructions

- don't-care for store instructions (why?)
see slide 10

see slide 11

see slide 15

ALUSrc

- must be 0 for R-type instructions

- must be 1 for load and store instructions

MemtoReg

- must be 1 for load instructions

- must be 0 for R-type instructions

- don't-care for store instructions (why?)

Datapath Design 17

Computer Organization IICS@VT ©2005-2020 WD McQuain

ALU Control

There are a lot of control signals, even in our simple datapath.

At this point, almost all of them are single-bit signals (i.e., they make a choice

between two alternate actions).

The ALU control needs to be different because there are more than two choices

for what it will actually do:
ALU

R-type

add

sub

and

or

slt

add

subtract

and

or

slt

load add

store add

So, the ALU will require a multi-bit control signal… why? How many bits?

Datapath Design 18

Computer Organization IICS@VT ©2005-2020 WD McQuain

ALU Control

This suggests separating the control logic into two modules:

- a master control module that determines the type of instruction being

executed and sets the non-ALU control signals

- a secondary control module that manages the interface of the ALU itself

The master module will send :

- a specific selector pattern for the ALU if the instruction is not R-type; e.g., it
sends the ADD selector pattern for lw and sw instructions

- a flag telling the secondary module to analyze the funct bits if the instruction

is R-type

We'll fill in the details of the two modules later, but for now we do know what each

must do, at a high level.

Datapath Design 19

Computer Organization IICS@VT ©2005-2020 WD McQuain

Unified Datapath Design with Control

add, sub, and, or, slt, lw, sw

Datapath Design 20

Computer Organization IICS@VT ©2005-2020 WD McQuain

Executing Branch Instructions

Read two operands from the register file

Use the ALU to compare the operands: subtract and check Zero signal

. . .

16-bit immediatertrsop

if GPR[rs] == GPR[rt] then

PC = PC + 4 + (imm << 2)

Datapath Design 21

Computer Organization IICS@VT ©2005-2020 WD McQuain

Executing Branch Instructions

. . .

Calculate the branch target address:

- Sign-extend displacement (immediate from instruction)

- Shift left 2 places (MIPS uses word displacement – why?)

- Add to PC + 4 (already calculated PC + 4 during the instruction fetch)

Send computed branch target address to the PC (if taken)

16-bit immediatertrsop

if GPR[rs] == GPR[rt] then

PC = PC + 4 + (imm << 2)

Datapath Design 22

Computer Organization IICS@VT ©2005-2020 WD McQuain

Aside: Branch Target Address

Examine the display below of a short MIPS assembly program, and the

addresses at which the instructions will be loaded into memory when the program

is executed:

address assembly source code

.text

0x00400000 main: addi $s0, $zero, 10

0x00400004 addi $s1, $zero, 20

0x00400008 j check

0x0040000C repeat: sub $s3, $s1, $s0

0x00400010 sra $s3, $s3, 1

0x00400014 beq $s3, $zero, exit

0x00400018 add $s0, $s0, $s3

0x0040001C check: bne $s0, $s1, repeat

0x00400020 exit: li $v0, 10

0x00400024 syscall

If taken, a

conditional

branch causes

the PC to be

set to the

address of the

instruction

that's the target

of the branch:

Datapath Design 23

Computer Organization IICS@VT ©2005-2020 WD McQuain

Aside: Branch Target Address

First of all, note that all the addresses are multiples of 4*.

Therefore, the "distance" between two instructions is always a multiple of 4.

*QTP: why isn't this surprising?

address assembly source code

.text

0x00400000 main: addi $s0, $zero, 10

0x00400004 addi $s1, $zero, 20

0x00400008 j $check

0x0040000C repeat: sub $s3, $s1, $s0

0x00400010 sra $s3, $s3, 1

0x00400014 beq $s3, $zero, exit

0x00400018 add $s0, $s0, $s3

0x0040001C check: bne $s0, $s1, repeat

0x00400020 exit: li $v0, 10

0x00400024 syscall

Datapath Design 24

Computer Organization IICS@VT ©2005-2020 WD McQuain

Aside: Branch Target Address

The immediate we store for a beq instruction is determined by the "distance" from

the beq instruction to the instruction that is the target of the branch.

And note that this computation is done by the assembler when it creates the

machine code representation of the instruction, not at runtime.

address assembly source code

. . .

0x0040000C repeat: sub $s3, $s1, $s0

. . .

0x0040001C check: bne $s0, $s1, repeat

0x00400020 exit: li $v0, 10

. . .

However, while bne is being fetched:

- we have already computed PC + 4

- which is the address of the next instruction in memory

- so we need to compute the distance relative to the next instruction

Datapath Design 25

Computer Organization IICS@VT ©2005-2020 WD McQuain

Aside: Branch Target Address

Here, that "distance" is 0x0C – 0x20 = – 0x14.

In 16-bit 2's complement, 0x14 represented as: 00000000 00010100

If the "distance" always ends in 00, there's no reason to store that 00 in the

instruction…

address assembly source code

. . .

0x0040000C repeat: sub $s3, $s1, $s0

. . .

0x0040001C check: bne $s0, $s1, repeat

0x00400020 exit: li $v0, 10

. . .

Datapath Design 26

Computer Organization IICS@VT ©2005-2020 WD McQuain

Aside: Branch Target Address

Do we gain anything if we don't store those two 0's in the instruction?

Yes. We can store a 16-bit "distance" in the instruction, but effectively use an 18-

bit "distance" at runtime.

That means that a conditional branch can "branch" farther… which is a gain.

address assembly source code

. . .

0x0040000C repeat: sub $s3, $s1, $s0

. . .

0x0040001C check: bne $s0, $s1, repeat

0x00400020 exit: li $v0, 10

. . .

16-bit 2's complement range: -215 to 215-1

18-bit 2's complement range: -217 to 217-1

Datapath Design 27

Computer Organization IICS@VT ©2005-2020 WD McQuain

address machine code

. . .

0x0040000C

. . .

0x0040001C 000101 10000 10001 1111111111111011

0x00400020

. . .

Aside: Branch Target Address

Now, consider the machine code for our example:

The immediate in the beq instruction is: 1111111111111011

That's -5. If we shift that left by 2 bits (multiply by 4), we get -20 (0x14).

If we add -0x14 to the address 0x00400020, we get 0x0040000C, which is the

target address we need.

target

bne

-0x14

Datapath Design 28

Computer Organization IICS@VT ©2005-2020 WD McQuain

Executing Branch Instructions

beq

16-bit immediatertrsop

Adder computes

branch target

ALU subtracts

and sets Zero

rs and rt

specify where

operands are

AND gate controls

which address

goes to the PC

Control tells ALU to subtract operands,

sets Branch signal

Immediate is sign-extended and shifted

Datapath Design 29

Computer Organization IICS@VT ©2005-2020 WD McQuain

Executing Jump Instructions

26-bit immediateop

Calculate the jump target address:

- Shift left 2 places (just as with branch target address calculation)

- Concatenate with PC + 4[31:28] (already calculated PC + 4 during the instruction fetch)

Send computed jump target address to the PC

p31p30p29p28 i25i24i23i22…i3i2i1i0 00

from PC+4

PC = (PC+4)[31:28]|(IR[25:0] << 2)

Datapath Design 30

Computer Organization IICS@VT ©2005-2020 WD McQuain

For jump (j) instructions, the 26-bit immediate is shifted

2 bits to the left, yielding a 28-bit offset, which is then

added to the starting address of the current memory

segment.

Aside: Jump Target Address

The calculation of the jump target address is similar to the calculation of the branch
target address (beq).

*QTP: why?

1111111111111111111111111111

. . .

0000000000000000000000000000

1111111111111111111111111111

. . .

0000000000000000000000000000

1111111111111111111111111111

. . .

0000000000000000000000000000

1111111111111111111111111111

. . .

0000000000000000000000000000

1111111111111111111111111111

. . .

0000000000000000000000000000

1111111111111111111111111111

. . .

0000000000000000000000000000

1111111111111111111111111111

. . .

0000000000000000000000000000
0000

0001

1111

1110

. . .

0010

1101

The MIPS model is to view memory as a sequence of 256

MB segments.

The starting address of the current memory segment is

given by the high 4 bits of PC + 4.*

Now, 256 MB can be addressed by 28-bit addresses.*

4GB address range

Datapath Design 31

Computer Organization IICS@VT ©2005-2020 WD McQuain

Executing Jump Instructions

26-bit immediateop

Control sets Jump signal so that the

jump address will be used to fetch

the next instruction

Calculate

address of next

sequential

instruction

High 4 bits of PC + 4 specify

"segment" containing this code. MUX passes

jump address

back to PC

Concatenate to form 32-bit address for jump

Datapath Design 32

Computer Organization IICS@VT ©2005-2020 WD McQuain

Unified Datapath

add, sub, and, or, slt, lw, sw, beq, j

Datapath Design 33

Computer Organization IICS@VT ©2005-2020 WD McQuain

Summary

The unified datapath that we have designed:

- illustrates many of the logical issues that must be solved in designing any

datapath

- can be extended to support additional instructions (easily for some, less so for

others)

- is fundamentally unsatisfactory in that it requires a single clock cycle be long

enough for every path within the datapath to stabilize before the next

instruction is fetched

We may explore the second issue in exercises.

The third issue can only be dealt with by transforming the design to incorporate a

pipeline.

