
MIPS ML 1

Computer Organization IICS@VT ©2009-2020 WD McQuain

Machine Language

Of course, the hardware doesn’t really execute MIPS assembly language code.

The hardware can only store bits, and so the instructions it executes must be

expressed in a suitable binary format.

We call the language made up of those instructions the machine language.

Different families of processors typically support different machine languages.

In the beginning, all programming was done in machine language… very ugly…

Assembly languages were created to make the programming process more

human-centric.

Assembly language code is translated into machine language by an assembler.

Alas, there is no universal assembly language. In practice, assembly languages

are tightly coupled with the underlying machine language and hardware.

MIPS ML 2

Computer Organization IICS@VT ©2009-2020 WD McQuain

Assembly provides convenient symbolic representation

- much easier than writing down numbers

- e.g., destination first

Machine language is the underlying reality

- e.g., destination is no longer first

Assembly can provide 'pseudoinstructions'

- e.g., “move $t0, $t1” exists only as an extension to assembly

- would be translated to “add $t0,$t1,$zero” by the assembler

When considering performance you should count real instructions

Assembly Language vs. Machine Language

MIPS ML 3

Computer Organization IICS@VT ©2009-2020 WD McQuain

Classifying the Assembly Instructions

Examining the (basic) MIPS assembly instructions, we can easily identify three

fundamentally different categories, according to the parameters they take:

- instructions that take 3 registers

add $s0, $s1, $s2

or $t1, $t0, $t1

- instructions that take 2 registers and an immediate (offset, number, address,

etc.)

addi $t7, $s5, 42

lw $s3, 12($t4)

beq $t1, $t3, Label01

- instructions that take an immediate

j Label01

MIPS ML 4

Computer Organization IICS@VT ©2009-2020 WD McQuain

Simple instructions, all 32 bits wide

Very structured, no unnecessary baggage

Only three* instruction formats with strictly-defined fields:

Overview of MIPS Machine Language

R-format: basic arithmetical-logical instructions

I-format load/store/conditional branch instructions

J-format: jump/unconditional branch instructions

R functshamtrdrtrsop

16-bit immediatertrsop

26-bit immediateop

I

J

* Well… not really…

MIPS ML 5

Computer Organization IICS@VT ©2009-2020 WD McQuain

Overview of MIPS Machine Language

Design principles

1. Simplicity favors regularity

2. Smaller is faster

3. Make the common case fast

4. Good design demands good compromises

MIPS ML 6

Computer Organization IICS@VT ©2009-2020 WD McQuain

Overview of MIPS Machine Language

R functshamtrdrtrsop

16-bit immediatertrsop

26-bit immediateop

I

J

In MIPS32 Release 2, there are over 200 basic MIPS machine instructions.

In order to specify that many different instructions, we could use a field of 7 or

more bits in every machine instruction.

But MIPS machine language uses a 6-bit opcode field and a variety of special

cases.

For R-format instructions, the opcode field is set to 000000, and the last 6 bits

specify exactly which arithmetic/logical instruction is to be performed.

MIPS ML 7

Computer Organization IICS@VT ©2009-2020 WD McQuain

Arithmetic/Logical Instructions

Instructions, like registers and words of data, are also 32 bits long

Example: add $t1, $s1, $s2

registers have numbers, $t1 = 9, $s1 = 17, $s2 =18

Machine language basic arithmetic/logic instruction format:

10000000000010011001010001000000

functshamtrdrtrsop

Can you guess what the field names stand for?

op operation code (opcode)

rs 1st source register

rt 2nd source register

rd destination register

shamt shift amount

funct opcode variant selector

MIPS ML 8

Computer Organization IICS@VT ©2009-2020 WD McQuain

Mapping Assembly to Machine Language

Note how the assembly instruction maps into the machine representation:

add $t1, $s1, $s2

10000000000010011001010001000000

functshamtrdrtrsop

The three register fields are each 5 bits wide. Why?

For arithmetic-logical instructions, both the op field and the funct field are used

to specify the particular operation that is to be performed.

If you view memory contents, this would appear as 0x02324820.

MIPS ML 9

Computer Organization IICS@VT ©2009-2020 WD McQuain

Load Instructions

Consider the load-word and store-word instructions:

- what would the regularity principle have us do?

- new principle: Good design demands a compromise

We need a different type of machine language instruction format for these:

- I-type for data transfer instructions

- other format was R-type for register

Example: lw $t0, 32($s2)

0000 0000 0010 00000100010010100011

16-bit numberrtrsop

Where's the compromise?

MIPS ML 10

Computer Organization IICS@VT ©2009-2020 WD McQuain

Jump Instructions

Consider the jump instruction: j Label01

We need a different type of machine language instruction format for this as well.

Example: j exit # assume exit is a statement label

26-bit offset depending on value of exit000010

MIPS ML 11

Computer Organization IICS@VT ©2009-2020 WD McQuain

What will be involved in executing a machine language instruction?

Consider an I-type instruction, say a lw instruction:

Anticipating Execution

16-bit immediatertrsopI

The opcode bits must

be analyzed to

determine that the
instruction is lw.

The contents of $rs must be fetched

to the ALU and added to the

immediate field to compute the

appropriate address.

The contents at that address

must be fetched from memory
and written to register $rt.

