
MIPS Assembly 1

Computer Organization IICS@VT ©2009-2020 WD McQuain

MIPS Hello World

Hello, World!

.data ## Data declaration section

String to be printed:

out_string: .asciiz "\nHello, World!\n"

.text ## Assembly language instructions go in text segment

main: ## Start of code section

li $v0, 4 # system call code for printing string = 4

la $a0, out_string # load address of string to be printed into $a0

syscall # call operating system to perform operation

specified in $v0

syscall takes its arguments from $a0, $a1, ...

li $v0, 10 # terminate program

syscall

This illustrates the basic structure of an assembly language program.

- data segment and text segment

- use of label for data object (which is a zero-terminated ASCII string)

- use of registers

- invocation of a system call

MIPS Assembly 2

Computer Organization IICS@VT ©2009-2020 WD McQuain

MIPS Register Names

MIPS assemblers support standard symbolic names for the general-purpose

registers:

0 $zero stores value 0; cannot be modified

2,3 $v0-1 used for system calls and procedure return values

4,7 $a0-3 used for passing arguments to procedures

8-15, $t0-9 used for local storage; calling procedure saves these

24,25

16-23 $s0-7 used for local storage; called procedure saves these

And for the reserved registers:

29 $sp stack pointer

30 $fp frame pointer; primarily used during stack manipulations

31 $ra used to store return address in procedure call

28 $gp pointer to area storing global data (data segment)

1 $at reserved for use by the assembler

26,27 $k0-1 reserved for use by OS kernel

MIPS Assembly 3

Computer Organization IICS@VT ©2009-2020 WD McQuain

MIPS Arithmetic Instructions

All arithmetic and logical instructions have 3 operands

Operand order is fixed (destination first):

<opcode> <dest>, <leftop>, <rightop>

Example:

C code: a = b + c;

MIPS code: add $s0, $s3, $s2

“The natural number of operands for an operation like addition is three…requiring

every instruction to have exactly three operands, no more and no less, conforms

to the philosophy of keeping the hardware simple”

MIPS Assembly 4

Computer Organization IICS@VT ©2009-2020 WD McQuain

Basic MIPS Arithmetic Instructions

add $rd,$rs,$rt Addition with overflow

GPR[rd] <-- GPR[rs] + GPR[rt]

div $rs,$rt Division with overflow

$lo <-- GPR[rs]/GPR[rt]

$hi <-- GPR[rs]%GPR[rt]

mul $rd,$rs,$rt Multiplication without overflow

GPR[rd] <-- (GPR[rs]*GPR[rt])[31:0]

sub $rd,$rs,$rt Subtraction with overflow

GPR[rd] <-- GPR[rs] - GPR[rt]

Here are the most basic arithmetic instructions:

Instructions "with overflow" will generate an runtime exception if the computed

result is too large to be stored correctly in 32 bits.

There are also versions of some of these that essentially ignore overflow, like
addu.

MIPS Assembly 5

Computer Organization IICS@VT ©2009-2020 WD McQuain

Limitations and Trade-offs

Design Principle: simplicity favors regularity.

Design Principle: smaller is faster.

Why?

Operands must be registers (or immediates), only 32 registers are provided.

Each register contains 32 bits.

Of course this complicates some things...

C code: a = b + c + d;

MIPS pseudo-code: add $s0, $s1, $s2

add $s0, $s0, $s3

MIPS Assembly 6

Computer Organization IICS@VT ©2009-2020 WD McQuain

Immediates

In MIPS assembly, immediates are literal constants.

Many instructions allow immediates to be used as parameters.

addi $t0, $t1, 42 # note the opcode

li $t0, 42 # actually a pseudo-instruction

Note that immediates cannot be used with all MIPS assembly instructions; refer to

your MIPS reference card.

Immediates may also be expressed in hexadecimal: 0x2A

MIPS Assembly 7

Computer Organization IICS@VT ©2009-2020 WD McQuain

MIPS Logical Instructions

Logical instructions also have three operands and the same format as the

arithmetic instructions:

<opcode> <dest>, <leftop>, <rightop>

Examples:

and $s0, $s1, $s2 # bitwise AND

andi $s0, $s1, 42

or $s0, $s1, $s2 # bitwise OR

ori $s0, $s1, 42

nor $s0, $s1, $s2 # bitwise NOR (i.e., NOT OR)

sll $s0, $s1, 10 # logical shift left

srl $s0, $s1, 10 # logical shift right

MIPS Assembly 8

Computer Organization IICS@VT ©2009-2020 WD McQuain

MIPS Load and Store Instructions

Transfer data between memory and registers

Example:

C code: A[12] = h + A[8];

MIPS code: lw $t0, 32($s3) # $t0 <-- Mem[$s3+32]

add $t0, $s2, $t0

sw $t0, 48($s3) # Mem[$s3+48] <-- $t0

Can refer to registers by name (e.g., $s2, $t2) instead of number

Load command specifies destination first: opcode <dest>, <address>

Store command specifies destination last: opcode <src>, <address>

Remember arithmetic operands are registers or immediates, not memory!

Can’t write: add 48($s3), $s2, 32($s3)

MIPS Assembly 9

Computer Organization IICS@VT ©2009-2020 WD McQuain

Labels

In MIPS assembly, a label is simply a string used to name a location in memory.

A label may refer to the location of a data value (variable) or of an instruction.

In essence, think of a label as representing an address.

Labels are terminated by a colon character.

.data

N: .word 10

.text

main:

lw $t0, N # $t0 <-- Mem[N] (10)

la $t1, N # $t1 <-- N (address)

. . .

exit: li $v0, 10

syscall

MIPS Assembly 10

Computer Organization IICS@VT ©2009-2020 WD McQuain

Addressing Modes

In register mode the address is simply the value in a register:

lw $t0, ($s3) # use value in $s3 as address

In immediate mode the address is simply an immediate value in the instruction:

lw $t0, 0 # almost always a bad idea

In base + register mode the address is the sum of an immediate and the value in

a register:

lw $t0, 100($s3) # address is $s3 + 100

There are also various label modes:

lw $t0, absval # absval is a label

lw $t0, absval + 100

lw $t0, absval + 100($s3)

MIPS Assembly 11

Computer Organization IICS@VT ©2009-2020 WD McQuain

MIPS unconditional branch instructions:

j Label # PC = Label

b Label # PC = Label*

jr $ra # PC = $ra

Unconditional Branch Instructions

These are useful for building loops and conditional control structures.

* What's the difference between j and b?

How far the target instruction can be from the point of the jump.

MIPS Assembly 12

Computer Organization IICS@VT ©2009-2020 WD McQuain

Decision making instructions

- alter the control flow,

- i.e., change the "next" instruction to be executed

MIPS conditional branch instructions:

bne $t0, $t1, <label> # branch on not-equal

PC += 4 + Label if

$t0 != $t1

beq $t0, $t1, <label> # branch on equal

Labels are strings of alphanumeric characters, underscores and periods, not

beginning with a digit. They are declared by placing them at the beginning of a

line, followed by a colon character.

Conditional Branch Instructions

if (i == j)

h = i + j;

bne $s0, $s1, Miss

add $s3, $s0, $s1

Miss:

MIPS Assembly 13

Computer Organization IICS@VT ©2009-2020 WD McQuain

Pseudo-Instructions

You may have noticed something is odd about a number of the MIPS instructions

that have been covered so far. For example:

li $t0, 0xFFFFFFFF

Now, logically there's nothing wrong with wanting to place a 32-bit value into one

of the registers.

But there's certainly no way the instruction above could be translated into a 32-bit

machine instruction, since the immediate value alone would require 32 bits.

This is an example of a pseudo-instruction. A MIPS assembler, or SPIM, may be

designed to support such extensions that make it easier to write complex

programs.

In effect, the assembler supports an extended MIPS architecture that is more

sophisticated than the actual MIPS architecture of the underlying hardware.

Of course, the assembler must be able to translate every pseudo-instruction into

a sequence of valid MIPS assembly instructions.

MIPS Assembly 14

Computer Organization IICS@VT ©2009-2020 WD McQuain

MIPS32 Assembly Programming

The remaining slides illustrate some basic issues that arise when programming

using MIPS32 assembly language.

These are NOT necessary for CS 2506, and are included only for historical

completeness.

Feel free to disregard them.

MIPS Assembly 15

Computer Organization IICS@VT ©2009-2020 WD McQuain

Conditional Control Structure

if (i < j)

goto A;

else

goto B;

$s3 == i, $s4 == j

slt $t1, $s3, $s4

beq $zero, $t1, B

A: # code...

b C

B: # code...

C:

MIPS Assembly 16

Computer Organization IICS@VT ©2009-2020 WD McQuain

for Loop Example

int Sum = 0;

for (int i = 1; i <= N; ++i) {

Sum = Sum + i;

}

$s0 == Sum, $s1 == N, $t0 == i

move $s0, $zero # register assignment

lw $s1, N # assume global symbol

li $t0, 1 # literal assignment

loop: beq $t0, $s1, done # loop test

add $s0, $s0, $t0 # Sum = Sum + i

addi $t0, $t0, 1 # ++i

b loop # restart loop

done:

MIPS Assembly 17

Computer Organization IICS@VT ©2009-2020 WD McQuain

Policy of Use Conventions

Register 1 ($at) is reserved for the assembler, 26-27 ($k0, $k1) for operating system.

Registers 28-31 ($gp, $sp, $fp, $ra) are reserved for special uses, not user variables.

Name Register number Usage

$zero 0 the constant value 0

$v0-$v1 2-3 values for results and expression evaluation

$a0-$a3 4-7 arguments

$t0-$t7 8-15 temporaries

$s0-$s7 16-23 saved

$t8-$t9 24-25 more temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address

MIPS programmers are expected to conform to the following conventions when using the 29

available 32-bit registers:

MIPS Assembly 18

Computer Organization IICS@VT ©2009-2020 WD McQuain

Basic fact: at the machine language level there are no explicit data types, only

contents of memory locations. The concept of type is present only

implicitly in how data is used.

Data

declaration: reserving space in memory, or deciding that a certain data item will

reside in a certain register.

Directives are used to reserve or initialize memory:

.data # mark beginning of a data segment

.asciiz "a string" # declare and initialize a string

.byte 13, 14, -3 # store values in successive bytes

.space 16 # alloc 16 bytes of space

.word 13, 14, -3 # store values in successive words

A complete listing of MIPS/MARS directives can be found in the MARS help

feature.

MIPS Assembly 19

Computer Organization IICS@VT ©2009-2020 WD McQuain

Arrays

First step is to reserve sufficient space for the array.

.data

list: .word 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

size: .word 10

. . .

la $t1, list # get array address

li $t2, 0 # set loop counter

print_loop:

beq $t2, $t3, print_loop_end # check for array end

lw $a0, ($t1) # print value at the array pointer

li $v0, 1

syscall

addi $t2, $t2, 1 # advance loop counter

addi $t1, $t1, 4 # advance array pointer

j print_loop # repeat the loop

print_loop_end:

Array elements are accessed via their addresses in memory, which is convenient
if you’ve given the .space directive a suitable label.

An array is simply a chunk of memory that we treat as a sequence of values that

are all of the same type.

MIPS Assembly 20

Computer Organization IICS@VT ©2009-2020 WD McQuain

Procedure Support

From previous study of high-level languages, we know the basic issues:

- declaration: header, body, local variables

- call and return

- parameters of various types, with or without type checking, and a return

value

- nesting and recursion

At the machine language level, there is generally little if any explicit support for

procedures. This is especially true for RISC architectures.

There are, however, many conventions at the assembly language level.

MIPS Assembly 21

Computer Organization IICS@VT ©2009-2020 WD McQuain

Procedure Call and Return

Calling a procedure requires transferring execution to a different part of the

code… in other words, a branch or jump operation:

MIPS reserves register $31, aka $ra, to store the return address.

jal <address> # $ra = PC + 4

PC = <address>

The called procedure must place the return value (if any) somewhere from which
the caller can retrieve it. The convention is that registers $v0 and $v1 can be

used to hold the return value. We will discuss what to do if the return value

exceeds 4 bytes later…

Returning from the procedure requires transferring execution to the return
address the jal instruction placed in $ra:

jr $ra # PC = $ra

MIPS Assembly 22

Computer Organization IICS@VT ©2009-2020 WD McQuain

Passing Parameters

In most cases, passing parameters is straightforward, following the MIPS

convention:

The called procedure can then access the parameters by following the same

convention.

What if a parameter needs to be passed by reference? Simply place the address

of the relevant data object in the appropriate register, and design the called

procedure to treat that register value accordingly.

What if a parameter is smaller than a word? Clever register manipulation in the

callee.

What if there are more than four parameters? We'll discuss that later…

$a0 # 1st parameter

$a1 # 2nd parameter

$a2 # 3rd parameter

$a3 # 4th parameter

MIPS Assembly 23

Computer Organization IICS@VT ©2009-2020 WD McQuain

MIPS Memory Organization

In addition to memory for static data and the program text (machine code), MIPS

provides space for the run-time stack (data local to procedures, etc.) and for

dynamically-allocated data:

Dynamic data is accessed via pointers held by the program being executed, with

addresses returned by the memory allocator in the underlying operating system.

Stack

Heap

Static data

Text

Reserved

$sp # last word alloc on stack

$gp # ptr into global data

$pc # ptr to next instruction

MIPS Assembly 24

Computer Organization IICS@VT ©2009-2020 WD McQuain

The Runtime Stack

MIPS provides a special register, $sp, which holds the address of the most

recently allocated word on a stack that user programs can employ to hold various

values:

Note that the run-time stack is "upside-down". That is, $sp, decreases when a

value is added to the stack and increases when a value is removed.

So, you decrement the stack pointer by 4 when pushing a new value onto the

stack and increment it by 4 when popping a value off of the stack.

MIPS Assembly 25

Computer Organization IICS@VT ©2009-2020 WD McQuain

Using the Runtime Stack

MIPS programs use the runtime stack to hold:

- "extra" parameters to be passed to a called procedure

- register values that need to be preserved during the execution of a called

procedure and restored after the return

- saved procedure return address, if necessary

- local arrays and structures, if any

activation record

or stack frame

for called

procedure

MIPS Assembly 26

Computer Organization IICS@VT ©2009-2020 WD McQuain

Runtime Stack Conventions

By convention, the caller will use:

- registers $s0 - $s7 for values it expects to be preserved across any

procedure calls it makes

- registers $t0 - $t9 for values it does not expect to be preserved

It is the responsibility of the called procedure to make sure that if it uses any of
the registers $s0 - $s7 it backs them up on the system stack first, and restores

them before returning.

Obviously, the called procedure also takes responsibility to:

- allocate any needed space on the stack for local data

- place the return value onto the stack

In some situations, it is useful for the caller to also maintain the value that $sp

held when the call was made, called the frame pointer. The register $fp would

be used for this purpose.

