
Intro MIPS 1

Computer Organization IICS@VT ©2009-2020 WD McQuain

Hardware Level Organization

PC

IR

Ex Unit

CPU

I/O Module

buffers

Main Memory

Instruction

Instruction

Instruction

Data

Data

Data

0

n-1

System

Bus

PC = program counter

IR = instruction register

Major components:

- memory

- central processing unit

- registers

- the fetch/execute cycle

(the hardware process)

Arithmetic/Logic

Registers

Instr Decoding

Intro MIPS 2

Computer Organization IICS@VT ©2009-2020 WD McQuain

Central Processing Unit

Control

- decodes instructions and manages CPU’s internal resources

Registers

- general-purpose registers available to user processes

- special-purpose registers directly managed in fetch/execute cycle

- other registers may be reserved for use of operating system

- very fast and expensive (relative to memory)

- hold all operands and results of arithmetic instructions (on RISC systems)

- save bits in instruction representation

Data path or arithmetic/logic unit (ALU)

- operates on data

Intro MIPS 3

Computer Organization IICS@VT ©2009-2020 WD McQuain

memory for data, programs,

compilers, editors, etc.

Stored Program Concept

Fetch & Execute Cycle

Instructions are fetched and put into a special register

Bits in the register "control" the subsequent actions

Fetch the “next” instruction and continue

Instructions are collections of bits

Programs are stored in memory, to be read or written just like data

PC MAR

IR MBR

I/O AR

I/O BREx Unit

CPUMain Memory

Instruction

Instruction

Instruction

Data

Data

Data

0

n-1

Intro MIPS 4

Computer Organization IICS@VT ©2009-2020 WD McQuain

Of course, on most systems several programs will be stored in memory at any

given time.

On most contemporary systems instructions of only one of those will be executed

at any given instant.

Stored Program Concept

The operating system will rapidly switch among the eligible

processes, producing the illusion that several programs are

executing at the same time.

PC MAR

IR MBR

I/O AR

I/O BREx Unit

CPUMain Memory

PowerPoint pgm

(machine code)

vim

(machine code)

GIS source code

(data)

g++

(machine code)

Intro MIPS 5

Computer Organization IICS@VT ©2009-2020 WD McQuain

Fetch/Execute Cycle

Sometimes called the hardware process… executes continuously.

Steps:

- fetch an instruction from memory to the instruction register

- increment the program counter register (by the instruction length)

- decode the instruction (in the control unit)

- fetch operands, if any, usually from registers

- perform the operation (in the data path); this may modify the PC register

- store the results, usually to registers

Fetch Stage Execute Stage

Fetch Next

Instruction

Execute

Instruction
START HALT

Intro MIPS 6

Computer Organization IICS@VT ©2009-2020 WD McQuain

Machine Language

But, how is all of this driven?

Machine language:

- registers store collections of bits

- all data and instructions must be encoded as collections of bits (binary)

- bits are represented as electrical charges (more or less)

- control logic and arithmetic operations are implemented as circuits, which are

driven by the movement of electrical charges

- so, the instructions directly manipulate the underlying hardware (cool, huh?)

The collection of all valid binary instructions is known as the machine language.

- what’s valid depends on the design of the hardware, especially the control

circuitry

- must be formally specified

- machine language is not human-friendly

Intro MIPS 7

Computer Organization IICS@VT ©2009-2020 WD McQuain

Assembly Language

More human-friendly syntax:

- expressed in text, not in binary

- instructions are identified by (more-or-less) mnemonic names

- instruction operands may include registers, memory locations, or…

Aspects of assembly language:

- unlike high-level languages, each instruction is extremely simple, so

assembly language programs are much longer than corresponding high-level

language programs

- assembly language must be translated into machine language in order to be

executed

- assembly language is not usually any more portable across different

hardware platforms that is machine language

- most assembly languages are quite similar… from a certain point of view

Intro MIPS 8

Computer Organization IICS@VT ©2009-2020 WD McQuain

MIPS ISA

We’ll be working with the MIPS instruction set architecture (ISA)

- similar to other architectures developed since the 1980's

- almost 100 million MIPS processors manufactured in 2002

- used by NEC, Nintendo, Cisco, Silicon Graphics, Sony, …

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

1998 2000 2001 20021999

Other

SPARC

Hitachi SH

PowerPC

Motorola 68K

MIPS

IA-32

ARM

Intro MIPS 9

Computer Organization IICS@VT ©2009-2020 WD McQuain

MIPS Registers

Registers

- 32 32-bit general-purpose registers, referred to as $0, $1, …, $31

- 32 32-bit floating-point registers, referred to as $f0, $f1, … $f31

- 16 64-bit floating-point registers, referred to as $f0, $f2, … $f30

- conventions govern the use of the general registers

We will, for now, adopt the view that the underlying computer is a “black

box” that understands MIPS machine language.

Intro MIPS 10

Computer Organization IICS@VT ©2009-2020 WD McQuain

Registers vs. Memory

Operands to arithmetic and logical instructions must be registers or immediates.

Compiler associates variables with registers

What about programs with lots of variables?

Processor I/O

Control

Datapath

Memory

Input

Output

Intro MIPS 11

Computer Organization IICS@VT ©2009-2020 WD McQuain

MIPS Assembly Language

We will study the MIPS assembly language as an exemplar of the concept.

MIPS assembly instructions each consist of a single token specifying the

command to be carried out, and zero or more operation parameters:

<mnemonic> par1 par2 … parN

The tokens are separated by commas. Indentation is insignificant to the

assembler, but is certainly significant to the human reader.

MIPS command tokens are short and mnemonic (in principle). For example:

add lw sw jr

Intro MIPS 12

Computer Organization IICS@VT ©2009-2020 WD McQuain

MIPS Assembly Language

MIPS operands include:

- hardware registers

- offset and base register

- literal constants (immediate parameters)

- labels

There are also some special directives, but those can wait...

Of course, MIPS assembly also allows comments. Simply, all characters from a

‘#’ character to the end of the line are considered a comment.

Intro MIPS 13

Computer Organization IICS@VT ©2009-2020 WD McQuain

Memory Organization

Viewed as a large, single-dimension array, with an address.

A memory address is an index into the array

"Byte addressing" means that the index points to a byte of memory.

0

1

2

3

4

5

6

...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

Intro MIPS 14

Computer Organization IICS@VT ©2009-2020 WD McQuain

MIPS Memory Organization

Bytes are nice, but most data items use larger "words"

For MIPS, a word is 32 bits or 4 bytes.

0

4

8

12

...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

232 bytes with byte addresses from 0 to 232 - 1

230 words with byte addresses 0, 4, 8, ... 232 - 4

Words are aligned, that is, each has an address that is a multiple of 4.

MIPS can be either big-endian (that is, the address of each word is the address of

the “left-most” byte of the word) or little-endian. This is important when viewing

the contents of memory.

Intro MIPS 15

Computer Organization IICS@VT ©2009-2020 WD McQuain

Simple MIPS Overview

http://jamesgart.com/procsim/

