
Digital Logic

Computer Organization II

1

CS@VT ©2005-2020 WD McQuain

Logic Design

Goal: to become literate in most common concepts and terminology of digital

electronics

Important concepts:

- use abstraction and composition to implement complicated functionality with

very simple digital electronics

- keep things as simple, regular, and small as possible

Things we will not explore:

- physics

- chip fabrication

- layout

- tools for chip specification and design

Digital Logic

Computer Organization II

2

CS@VT ©2005-2020 WD McQuain

Motivation

Consider the external view of addition:

What kind of circuitry would go into the "black box" adder to produce the correct

results?

How would it be designed? What modular components might be used?

Adder

???

x + y

y

x

Error?

Digital Logic

Computer Organization II

3

CS@VT ©2005-2020 WD McQuain

Basic Logic Gates

Fundamental building blocks of circuits; mirror the standard logical operations:

OR gateAND gateNOT gate

A Out

0 1

1 0

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

Note the outputs of the AND and OR gates are commutative with respect to the

inputs.

Multi-way versions of the AND and OR gates are commonly assumed in design.

Digital Logic

Computer Organization II

4

CS@VT ©2005-2020 WD McQuain

Additional Common Logic Gates

NAND gateXOR gate

A B Out

0 0 0

0 1 1

1 0 1

1 1 0

A B Out

0 0 1

0 1 1

1 0 1

1 1 0

NOR gate

A B Out

0 0 1

0 1 0

1 0 0

1 1 0

XNOR gate
A B Out

0 0 1

0 1 0

1 0 0

1 1 1

Digital Logic

Computer Organization II

5

CS@VT ©2005-2020 WD McQuain

Combinational and Sequential Circuits

A combinational circuit is one with no "memory". That is, its output depends only

upon the current state of its inputs, and not at all on the current state of the circuit

itself.

A sequential circuit is one whose output depends not only upon the current state

of its inputs, but also on the current state of the circuit itself.

For now, we will consider only combinational circuits.

Digital Logic

Computer Organization II

6

CS@VT ©2005-2020 WD McQuain

From Function to Combinational Circuit

Given a simple Boolean function, it is relatively easy to design a circuit composed

of the basic logic gates to implement the function:
: x yz x y

This circuit implements the exclusive or (XOR) function, often represented as a

single logic gate:

Digital Logic

Computer Organization II

7

CS@VT ©2005-2020 WD McQuain

Sum-of-Products Form

A Boolean expression is said to be in sum-of-products form if it is expressed as a

sum of terms, each of which is a product of variables and/or their complements:

baba

It's relatively easy to see that every Boolean expression can be written in this

form.

Why?

The summands in the sum-of-products form are called minterms.

- each minterm contains each of the variables, or its complement, exactly once

- each minterm is unique, and therefore so is the representation (aside from

order)

Digital Logic

Computer Organization II

8

CS@VT ©2005-2020 WD McQuain

Sum-of-Products Form

Given a truth table for a Boolean function, construction of the sum-of-products

representation is trivial:

- for each row in which the function value is 1, form a product term involving all

the variables, taking the variable if its value is 1 and the complement if the

variable's value is 0

- take the sum of all such product terms

x y z F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

x y z

x y z

x y z

x y z

F x y z x y z x y z x y z

Digital Logic

Computer Organization II

9

CS@VT ©2005-2020 WD McQuain

Equivalence

(, ,) Given

 Idempotence, twice

 Commutativi

F x y z x y z x y z x y z x y z

x y z x y z x y z x y z x y z x y z

x y z x y z x y z x y z x y z x y z

ty, Associativity

 Commutativity, Distributivity

1 1 1 Boundedness

x x y z y y x z z z x y

y z x z x y

x y x z y z

 Boundedness, Commutativity

(, ,)G x y z

Digital Logic

Computer Organization II

10

CS@VT ©2005-2020 WD McQuain

Efficiency of Expression

While the sum-of-products form is arguably natural, it is not necessarily the

simplest way form, either in:

- number of gates (space)

- depth of circuit (time)

zyxzyx

zyxzyxzyxF

),,(

(, ,)G x y z x y y z x z

Digital Logic

Computer Organization II

11

CS@VT ©2005-2020 WD McQuain

1-bit Half Adder

Let's make a 1-bit adder (half adder)… we can think of it as a Boolean function

with two inputs and the following defining table:
A B Sum

0 0 0

0 1 1

1 0 1

1 1 0

Here's the resulting circuit.

It's equivalent to the XOR circuit

seen earlier.

But… in the final row of the truth

table above, we've ignored the

fact that there's a carry-out bit.

Digital Logic

Computer Organization II

12

CS@VT ©2005-2020 WD McQuain

Dealing with the Carry

The carry-out value from the 1-bit sum can also be expressed via a truth table.

However, the result won't be terribly useful unless we also take into account a

carry-in.

A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

The resulting sum-of-products

expressions are:

inininin CBACBACBACBASum

out in in in in

in in in in

in in

in in

C A B C A B C A B C A B C

A B C A B C A B C C

A B C A B C A B

A C B C A B

Digital Logic

Computer Organization II

13

CS@VT ©2005-2020 WD McQuain

1-bit Full Adder

The expressions for the sum and carry lead to the following unified

implementation:

inin

inin

CBACBA

CBACBASum

out in inC A B A C B C

Digital Logic

Computer Organization II

14

CS@VT ©2005-2020 WD McQuain

1-bit Full Adder as a Module

When building more complex circuits, it is useful to consider sub-circuits as

individual, "black-box" modules. For example:

inin

inin

CBACBA

CBACBASum

out in inC A B A C B C

Digital Logic

Computer Organization II

15

CS@VT ©2005-2020 WD McQuain

Chaining a 4-bit Adder

An 4-bit adder built by

chaining 1-bit adders:

This has one serious shortcoming. The carry bits must

ripple from top to bottom, creating a lag before the

result will be obtained for the final sum bit and carry.

Digital Logic

Computer Organization II

16

CS@VT ©2005-2020 WD McQuain

Carry-Lookahead Adder

Perhaps surprisingly, it's possible to compute all the carry bits before any sum bits

are computed... and that leads to a faster adder design:

Why is this faster than the ripple-carry approach?

Digital Logic

Computer Organization II

17

CS@VT ©2005-2020 WD McQuain

Latency

The answer lies in the concept of gate latency.

Each logic gate takes a certain amount of time (usually measured in picoseconds)

to stabilize on the correct output... we call that the latency of the gate.

For simplicity, we'll assume in this course that all gates (except inverters) have the

same latency, and that inverters are so fast they can be igored.

Then, the idea is that the latency of a circuit can be measured by the maximum

number of gates a signal passes through within the circuit... called the depth of the

circuit.

So, the 1-bit full adder we saw earlier has a depth of 2.

Digital Logic

Computer Organization II

18

CS@VT ©2005-2020 WD McQuain

Carry-Lookahead Adder Latency

Without going into details:

How does that compare to the ripple-carry approach?

Depth is 3 gates

Depth is 2 gates

Total depth is 5 gates

Digital Logic

Computer Organization II

19

CS@VT ©2005-2020 WD McQuain

Ripple-carry Latency

A 4-bit ripple-carry design would have 4 1-bit full adders, and we've seen that each

of those has a depth of 2 gates.

But those adders fire sequentially, so running one after the other would entail a

total depth of 8 gates.

So, the ripple-carry design would be 1.6 times as "deep" and it's not unreasonable

to say it would take about 1.6 times as long to compute the result.

Just how you'd implement the computation of those carry bits is an interesting

question...

Digital Logic

Computer Organization II

20

CS@VT ©2005-2020 WD McQuain

Refined Adder Design

The following slides illustrate an approach used to improve efficiency, versus the

ripple-carry design covered earlier.

These may or not be covered, at the discretion of your instructor.

Digital Logic

Computer Organization II

21

CS@VT ©2005-2020 WD McQuain

Carry-Lookahead Logic

Let's look at just how the carry bits depend on the summand bits:

c4 c3 c2 c1 c0

a3 a2 a1 a0

b3 b2 b1 b0

s3 s2 s1 s0

It's clear that c1 = 1 if and only if at least two of the bits in the previous column

are 1.

Since this relationship holds for every carry bit (except c0), we have the following

general Boolean equation for carry bits:

We will allow for a carry-in in

the low-order position (c0).

1i i i i i i ic a b a c b c

(Note that • represents AND and + represents OR.)

Digital Logic

Computer Organization II

22

CS@VT ©2005-2020 WD McQuain

Now, this relationship doesn't seem to help until we look at it a bit more deeply:

1 ()i i i i i i i i i i i ic a b a c b c a b a b c

Carry-Lookahead Logic

i i i

i i i

g a b

p a b

1 0 0 0

2 1 1 1 1 1 0 0 0 1 1 0 1 0 0()

c g p c

c g p c g p g p c g p g p p c

If we define

then we get the following relationships:

Now, we can calculate all of the gi and pi terms at once, from the bits of the two

summands, and c0 will be given, so we can compute c1 and c2 before we actually

do the addition!

Digital Logic

Computer Organization II

23

CS@VT ©2005-2020 WD McQuain

Finally, here's how we can calculate c3 and c4:

Carry-Lookahead Logic

3 2 2 2

2 2 1 1 0 1 0 0

2 2 1 2 1 0 2 1 0 0

()

c g p c

g p g p g p p c

g p g p p g p p p c

So, we have the necessary logic to implement the 4-bit Carry Lookahead unit for

our 4-bit Carry Lookahead Adder:

4 3 3 3

3 3 2 2 1 2 1 0 2 1 0 0

3 3 2 3 2 1 3 2 1 0 3 2 1 0 0

()

c g p c

g p g p g p p g p p p c

g p g p p g p p p g p p p p c

Digital Logic

Computer Organization II

24

CS@VT ©2005-2020 WD McQuain

Carry-Lookahead Logic

i i i

i i i

g a b

p a b

1 0 0 0

2 1 1 0 1 0 0

3 2 2 1 2 1 0 2 1 0 0

4 3 3 2 3 2 1 3 2 1 0 3 2 1 0 0

c g p c

c g p g p p c

c g p g p p g p p p c

c g p g p p g p p p g p p p p c

Digital Logic

Computer Organization II

25

CS@VT ©2005-2020 WD McQuain

Abstraction

The gi and pi bits represent an abstract view of how carry bits are generated and

propagate during addition:

i i ig a b

i i ip a b

generate bit for i-th column

adding the summand bits generates a carry-

out bit iff both summand bits are 1

propagate bit for i-th column

if ci = 1 (the carry-out bit from the previous

column), there's a carry-out into the next

column iff at least one of the summand bits is 1

Digital Logic

Computer Organization II

26

CS@VT ©2005-2020 WD McQuain

Abstraction

So, here's why the formulas we've derived make sense intuitively:

1 0 0 0c g p c

4 3 3 2 3 2 1 3 2 1 0 3 2 1 0 0c g p g p p g p p p g p p p p c

c1 is 1 iff:

c0 was 1 and column 0 propagated it

or

column 0 generated a carry-out

c4 is 1 iff:

c0 was 1 and columns 0 to 3 propagated it, or

column 0 generated a carry-out and columns 1 to 3

propagated it, or

column 1 generated a carry-out and columns 2 to 3

propagated it, or

column 2 generated a carry-out and column 3

propagated it, or

column 3 generated a carry-out

Digital Logic

Computer Organization II

27

CS@VT ©2005-2020 WD McQuain

Implementation Below the Gate Level

The following slides illustrate how transistors might be used to implement the

logic gates introduced earlier.

These may or not be covered, at the discretion of your instructor.

Digital Logic

Computer Organization II

28

CS@VT ©2005-2020 WD McQuain

Aside: Transistors

Transistors are a primary building block for electronic circuits.

* By Brews ohare - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=18796795

MOS-FET

(metal-oxide-semiconductor field-effect transistor)

Mohamed Atalla & Dawon Kahng, Bell Labs

gate input

source drain

base

insulator

1953 1959

Digital Logic

Computer Organization II

29

CS@VT ©2005-2020 WD McQuain

Aside: Transistors

gate input

source drain

base

insulator

P-type transistor

gate input 0: source is sent to drain

gate input 1: drain is "floating"

N-type transistor

gate input 0: drain is "floating"

gate input 1: source is sent to drain

Digital Logic

Computer Organization II

30

CS@VT ©2005-2020 WD McQuain

Aside: Implementing Logic Gates

Here's one way an inverter might be implemented:

(Apologies to electronics engineers for the inherent imprecision of this.)

data input
source

Output signal equals complement of data input.

P-type transistor

gate input 0: source is sent to drain

gate input 1: drain is "floating"

drain

Pull resistor

(reduces signal that's less than 1 to 0)

gate

Digital Logic

Computer Organization II

31

CS@VT ©2005-2020 WD McQuain

Aside: Implementing Logic Gates

Here's one way an AND gate might be implemented:

(Apologies to electronics engineers for the inherent imprecision of this.)

data input
source

Output signal equals AND of data inputs

N-type transistor

gate input 0: drain is "floating"

gate input 1: source is sent to drain

drain

Pull resistors

data input

g
a
te

Digital Logic

Computer Organization II

32

CS@VT ©2005-2020 WD McQuain

Aside: Implementing Logic Gates

Here's one way an OR gate might be implemented:

(Apologies to electronics engineers for the inherent imprecision of this.)

data input source

Output signal equals OR of data inputs

N-type transistor

gate input 0: drain is "floating"

gate input 1: source is sent to drain

drain

Pull resistor

g
a

te

data input

