CS2506 Spring 2018 “Understanding Heap-spraying Attacks”

Due: 23:59 April 27, 2018

1 Understanding Heap-Spraying Attacks

This project is part of an NSF-funded effort to increase CyberSecurity-related
education in CS and ECE core courses at Virginia Tech. As part of this effort,
we ask that you complete a post-survey after the project. Information will be
forthcoming.

The project is intended to allow you to explore CyberSecurity aspects related
to integrity that go beyond what was done in the Attack lab. We hope you
enjoy the project!

2 Introduction

In this lab, you will be deepening your understanding of cybersecurity threats directed at
the integrity of critical systems. This lab builds on the techniques you have learned in the
attack lab, but introduces a number of new elements that are part of real-life attacks. In
this lab, you will

1. Construct an attack against a vulnerable web browser by crafting malicious JavaScript
code.

2. Construct and deliver an exploit that executes a target program on the victim’s ma-
chine.

3. Use the heap spraying technique to increase the likelihood of a successful attack in
the face of uncertainty about memory addresses and memory layout.

3 Adversary Model

We assume that the adversary (which will be your team in this lab) has the following
abilities:

1. Load a malicious piece of JavaScript code into the victim’s browser and execute it.
For instance, the attacker might have gained control of a 3rd party ad service which
content providers use to embed ads into the web pages their users are visiting.

2. We assume that the browser contains a separate vulnerability (such as a buffer over-
flow vulnerability like the one you exploited in the attack lab) that allows the at-
tacker to transfer control. However, unlike in the attack lab, the nature of the vul-

Created by Godmar Back and Kijin An (gback@cs.vt.edu)]. Revision : 1.4 March 29,2018

CS2506 Spring 2018 “Understanding Heap-spraying Attacks”

nerability does not allow you to transfer control to a specific address, but rather to
an approximate address within certain bounds.

3. We assume that the attacker has found a way to disable executable space protection
for the range of memory addresses in which some JavaScript objects are allocated.
Executable space protection is a very efficient way of protecting against code injec-
tion attacks, but there have been attacks in which attackers were able to overcome
this line of defense.

4. In addition to executable space protection, we assume that the system has taken
other countermeasures, specifically that the attacker is prevented from allocating
large, contiguous objects on the heap. Real-life virtual machines (particularly their
Just-In-Time compiler) exploit a variety of measures that make it more difficult for
attackers to control the layout and size of objects in memory.

4 Heap Spraying

In the attack lab, you had considered how to construct an attack using gadgets - snippets
of code, often starting in the middle of an instruction - that can be chained together to
create longer sequences of code an attacker wishes to execute. In many cases, it is difficult
to find out for an attacker where to find such gadgets. Heap spraying is a technique
by which an attacker uses existing memory allocation facilities to place suitably crafted
gadgets into the victims memory. This technique can be used in systems - such as web
browsers - where an attacker can trigger the execution of code on the victims machine,
such as JavaScript code downloaded by a browser.

5 Mode of Attack

The JavaScript code you will write should allocate a number of objects of your choosing.
We recommend that you use the Uint8Array type that was introduced in the latest version
of JavaScript (ES2017). It provides functionality that is similar to an unsigned char []
array in C. You may store arbitrary byte values in the instances you allocate. Internally,
those values will be stored consecutively in memory.

For this project, you will need only a very small amount of JavaScript. Fundamentally,
JavaScript uses a similar syntax to C/Java, despite being a dynamically typed language at
its core. Block structures, operators, array accesses, conditionals and loops work similar to
C/Java. That said, if you have any doubts, feel free to ask questions regarding JavaScript
syntax and semantics and we will answer them!

We provide access to the vulnerabilities assumed in the adversary model through a C++
function which you can call from your JavaScript code. This function is called as follows:

triggerOverflow (obj)

Created by Godmar Back and Kijin An (gback@cs.vt.edu) 2 Revision : 1.4 March 29, 2018

https://en.wikipedia.org/wiki/Executable_space_protection
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Uint8Array

CS2506 Spring 2018 “Understanding Heap-spraying Attacks”

The function receives a reference to a JavaScript object. It will then use an (assumed)
existing vulnerability to transfer control to a randomly chosen address in the vicinity of
the real virtual address at which the content of the object referred to by obj is located.

Your goal is to trick the vulnerable browser into executing a binary located on the victims
machine. In a real life attack, this may be an executable such as a server program or shell
that then allows access to the victims machine. In this lab, we ask you to execute the
binary “./success” which you may assume is located in the current directory where
your code runs.

6 Constructing the Exploit Payload

Similar to the attacklab, you will need to figure out assembly code sequences to place in-
side the gadgets you allocate. You will want to include a “nop slide,” a sequence of nop
instructions followed by the actual exploit code. If control is transferred to any address
within the nop slide, the exploit code at the bottom of the slide will eventually be trig-
gered. Secondly, you will need to research how to write assembly code that performs a
system call that triggers the execution of the success binary.

System calls are a way for a program to obtain access to services from the Operating
System Kernel (which is the supervisory core control program that controls all activity on
the machine). You will learn a lot more about system calls in CS3214. Examples of such
services include input/output to terminals, files, or the network, as well as interaction
with other processes running on the same machine. Starting a new process or executing a
new program is also done via system calls. System calls look like C functions when they
are invoked, but under the hood they trigger a transfer to the OS kernel that performs the
desired task. You will need to construct the necessary assembly code to perform a system
call to start executing the “. /success” program.

As an example, consider the following assembly code sample.s, which does the equiva-
lentof write (1, "Hello World\n", 12); exit (0);

Look in /usr/include/asm/unistd_64.h for these constants
SYS_write = 1
SYS_exit = 60

.globl start # entry symbol must be global

start:

mov $SYS_write, %$rax # system call number

mov $1, %rdi # argO

lea hello(%rip), %rsi # argl

mov S$hello_len, $%$rdx # arg2

syscall # eq. of write(l, "Hello, World\n", sizeof(...));

mov $SYS_exit, %rax # system call number

mov $0, %rdi # arg0
syscall # eqg. of exit (0)

Created by Godmar Back and Kijin An (gback@cs.vt.edu) 3 Revision : 1.4 March 29, 2018

CS2506 Spring 2018 “Understanding Heap-spraying Attacks”

should not be reached if exit () is successful

hello:
.asciz "Hello, World\n"
hello_len = . - hello

You can build and run this code as follows:

$ gcc -c sample.s -o sample.o

$ 1d -e start sample.o -o sample

$./sample

Hello, World

The objdump command will show you the assembly code:
$ objdump —-d ./sample

./sample: file format elf64-x86-64

Disassembly of section .text:

0000000000400078 <start>:

400078: 48 c¢7 cO 01 00 00 0O mov $0x1, %$rax

40007f: 48 c7 c¢7 01 00 00 0O mov $0x1,%rdi

400086: 48 8d 35 19 00 00 0O lea 0x19(%rip), %rsi # 4000a6 <hello>
40008d: 48 c¢7 c2 0e 00 00 0O mov $0xe, $rdx

400094: 0f 05 syscall

400096: 48 ¢7 c0 3c 00 00 00 mov $0x3c, $rax

40009d: 48 c7 c7 00 00 00 0O mov $0x0, $rdi

4000a4: 0f 05 syscall

Note the use of RIP-relative addressing in the lea (load effective address) instruction.
The use of this instruction allows for the code to be written in a way that makes it in-
dependent of the address in memory where it is stored. The only assumption is that
the string “Hello, World” starts at offet 0x19 from 0x40008d. Appendix 10 I contains full
documentation about the x86_64 Linux system call conventions.

Your exploit should provide code invoke the system call

execve ("./success", NULL, NULL);

7 Delivering the Exploit

Your JavaScript code will be included into the following webpage as script heapspray. js:

<!DOCTYPE html>

<html>

<head>

<title>A malicious page</title>

<script type="text/javascript" src="heapspray.]js"></script>
</head>

Created by Godmar Back and Kijin An (gback@cs.vt.edu) 4 Revision : 1.4 March 29, 2018

https://stackoverflow.com/questions/29421766/what-does-mov-offsetrip-rax-do

CS2506 Spring 2018 “Understanding Heap-spraying Attacks”

<body> (Elided) </body>
</html>

For testing, the autograder’s browser will load this page repeatedly. We provide two
autograder versions:

e cs2506test This version will run your code 5 times. You will get full informa-
tion (including console output) for all runs to help you debug JavaScript syntax or
runtime errors. You may use console.log to output information to the console.

e cs2506final This version will run your code 100 times and provide only tabu-
lated results how often your exploit was successful in executing the ./success pro-
gram. This will take longer, so you should try it only once you have consistently
achieved success using the cs2506test target.

8 Using Uint8Array

Below is an example of how to write 4 bytes into contiguous memory using the Uint 8Array
class.

const payload = [
0x31, 0xf6, 0x48, Oxbb,
17

var p = new Uint8Array(4);
for (var i = 0; 1 < payload.length; i++)
pli] = payload[i];

console.log(p);

Unlike in the attack lab (but more similar to an actual attacker in certain scenarios), you
will not be able to run the exploit locally. However, you can write a C program that allows
you to test your exploits. For the example given earlier, you could use:

[**
* Show how to copy assembly code to the heap and invoke it.
*/

#include <sys/mman.h>

#include <sys/user.h> // for PAGE_SIZE, PAGE_MASK

#include <stdlib.h>

#include <stdint.h>

#include <string.h>

#include <assert.h>

const char payload[] = {
/*400078: %/ 0x48, 0Oxc7, 0OxcO, 0x01, 0x00, 0x00, 0x00, // mov $0x1, $rax
/*40007f: %/ 0x48, 0xc7, 0Oxc7, 0x01, 0x00, 0x00, 0x00, // mov $0x1, $rdi
/*400086:%/ 0x48, 0x8d, 0x35, 0x19, 0x00, 0x00, 0x00, // lea 0x19 (%rip), %rsi
/*40008d:«/ 0x48, Oxc7, Oxc2, 0x0e, 0x00, 0x00, 0x00, // mov S0xe, $rdx
/%x400094: %/ 0x0f, 0x05, // syscall

Created by Godmar Back and Kijin An (gback@cs.vt.edu) 5 Revision : 1.4 March 29, 2018

https://developer.mozilla.org/en-US/docs/Web/API/Console/log

CS2506 Spring 2018 “Understanding Heap-spraying Attacks”

/*400096: %/ 0x48, 0xc7, 0xc0, O0x3c, 0x00, 0x00, 0x00, // mov $0x3c, $rax
/*40009d:+/ 0x48, 0xc7, 0Oxc7, 0x00, 0x00, 0x00, 0x00, // mov $0x0, $rdi
/*4000a4d:«/ 0x0f, 0x05, // syscall
/*4000a6: %/ 0x48, 0x65, Ox6c, Ox6c, Oxo6f, Ox2c, 0x20,
0x57, 0x6f, 0x72, 0x6c, 0x64, 0xOa // "Hello, World\n"
}i
typedef void (*function_t) (void); // a pointer to a void f(void) function.
int
main ()

{
// allocate heap memory for the payload.
char * heap_memory = malloc(sizeof (payload));
memcpy (heap_memory, payload, sizeof (payload));

// turn no-execute protection off for this page.

void * page_base = (void *) ((uintptr_t) heap_memory & PAGE_MASK);

int rc = mprotect (page_base, PAGE_SIZE, PROT_READ | PROT_EXEC | PROT_WRITE);
assert (rc == 0);

((function_t) payload) ();

9 Taking Memory Layout Into Account

In a real-world attack, the attacker may not be able to know the exact addresses of where
in memory the objects they allocated are placed. We model this uncertainty using the
assumed triggerOverflow function as follows: If you call triggerOverflow (ob3j),
then control will be transferred to a random address that is in the vicinity of obj.

Your goal, therefore, must be to maximize the chance that jumping to a random address
in the vicinity of where obj is allocated will lead to the execution of your payload. To
that end, you should experiment with allocating multiple payload objects as well as with
nop slides in front of your payload. Keep in mind the restriction we have imposed for
this lab that Uint 8Array object cannot be larger than 1 000 bytes.

Furthermore, JavaScript - like Java - is a garbage collected language. This means objects
to which no references are kept might be garbage-collected.

// will allocate 100 objects, but keep only the last one alive!
// objects 1..99 might be garbage collected
for (var 1 = 0; i1 < 100; i++) {

var obj = new Uint8Array();

}

To avoid this, you must store a reference to the object inside some other object, such as an
array.

Created by Godmar Back and Kijin An (gback@cs.vt.edu) 6 Revision : 1.4 March 29,2018

CS2506 Spring 2018 “Understanding Heap-spraying Attacks”

10 How to submit

Submission will be via the autograder as described in this Google Document.

You are allowed to work with a partner on this assignment; your partner can be enrolled
in a different section of the course. If you do work with a partner, you should make a joint
submission, not separate submissions. Indicate your partnership by including a comment
block like this at the beginning of your file:

/++xThe following students worked as partners on this assignment:
PID: ankijin, mihee87
*%/

Good Luck!
The x86_64 system call conventions are as follows:
1. Registers used to pass the system call arguments. See also syscall(2).

arch/ABI ‘ argl arg? arg3 argd argd argb arg/
x86_64 ‘ rdi rsi rdx rl0 r8 9 -

2. A system-call is done via the syscall instruction. It may clobber %rcx and %r11, as
well as %rax, but other registers are preserved.

3. The number of the syscall has to be passed in register %rax. System calls are limited
to six arguments, no argument is passed directly on the stack. Upon return from
the syscall, register %rax contains the result of the system call. A value in the range
between -4095 and -1 indicates an error. User programs will set the errno variable
to this value, multiplied by -1, and return -1 from the actual call.

Created by Godmar Back and Kijin An (gback@cs.vt.edu) 7 Revision : 1.4 March 29, 2018

https://docs.google.com/document/d/1qDoBbGrsx3NjiyXB9v9OKR1liujkrdwO8FpfiDRaQ8o/edit?usp=sharing
http://man7.org/linux/man-pages/man2/syscall.2.html
https://stackoverflow.com/questions/10583891/is-syscall-an-instruction-on-x86-64

	Understanding Heap-Spraying Attacks
	Introduction
	Adversary Model
	Heap Spraying
	Mode of Attack
	Constructing the Exploit Payload
	Delivering the Exploit
	Using Uint8Array
	Taking Memory Layout Into Account
	How to submit

