
Cache Performance 1

 Computer Organization II CS@VT ©2005-2015 CS:APP & McQuain

Cache Memory and Performance

Many of the following slides are taken with permission from

Complete Powerpoint Lecture Notes for

Computer Systems: A Programmer's Perspective (CS:APP)

Randal E. Bryant and David R. O'Hallaron

http://csapp.cs.cmu.edu/public/lectures.html

The book is used explicitly in CS 2505 and CS 3214 and as a reference in CS

2506.

http://www.cs.cmu.edu/~bryant
http://www.cs.cmu.edu/~droh
http://www.cs.cmu.edu/~droh
http://csapp.cs.cmu.edu/public/lectures.html
http://csapp.cs.cmu.edu/public/lectures.html

Cache Performance 2

 Computer Organization II CS@VT ©2005-2015 CS:APP & McQuain

Cache Memories

Cache memories are small, fast SRAM-based memories managed automatically in

hardware.

– Hold frequently accessed blocks of main memory

CPU looks first for data in caches (e.g., L1, L2, and L3), then in main memory.

Typical system structure:

Main

memory
I/O

bridge
Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Cache

memories

Cache Performance 3

 Computer Organization II CS@VT ©2005-2015 CS:APP & McQuain

General Cache Organization (S, E, B)

E = 2e lines (blocks) per set

S = 2s sets

set

line (block)

Cache size:
C = S x E x B data bytes

0 1 2 B-1 tag v

B = 2b bytes per cache block (the data)
valid bit

0

1

2

3

2s-1

0 1 2e-1

Cache Performance 4

 Computer Organization II CS@VT ©2005-2015 CS:APP & McQuain

Cache Organization Types

The "geometry" of the cache is defined by:

 S = 2s the number of sets in the cache

 E = 2e the number of lines (blocks) in a set

 B = 2b the number of bytes in a line (block)

E = 1 (e = 0) direct-mapped cache

 only one possible location in cache for each DRAM block

S > 1

E = K > 1 K-way associative cache

 K possible locations (in same cache set) for each DRAM block

S = 1 (only one set) fully-associative cache

E = # of cache blocks each DRAM block can be at any location in the cache

Cache Performance 5

 Computer Organization II CS@VT ©2005-2015 CS:APP & McQuain

Cache Performance Metrics

miss rate: fraction of memory references not found in cache (# misses / # accesses)

= 1 – hit rate

Typical miss rates:

 - 3-10% for L1

 - can be quite small (e.g., < 1%) for L2, depending on cache size and locality

hit time: time to deliver a line in the cache to the processor

 includes time to determine whether the line is in the cache

Typical times:

 - 1-2 clock cycles for L1

 - 5-20 clock cycles for L2

miss penalty: additional time required for data access because of a cache miss

 typically 50-200 cycles for main memory

 Trend is for increasing # of cycles… why?

Cache Performance 6

 Computer Organization II CS@VT ©2005-2015 CS:APP & McQuain

Calculating Average Access Time

Let’s say that we have two levels of cache, backed by DRAM:

 - L1 cache costs 1 cycle to access and has miss rate of 10%

 - L2 cache costs 10 cycles to access and has miss rate of 2%

 - DRAM costs 80 cycles to access (and has miss rate of 0%)

Then the average memory access time (AMAT) would be:

 1 + always access L1 cache

 0.10 * 10 + probability miss in L1 cache * time to access L2

 0.10 * 0.02 * 80 probability miss in L1 cache *

 probability miss in L2 cache * time to access DRAM

 = 2.16 cycles

Cache Performance 7

 Computer Organization II CS@VT ©2005-2015 CS:APP & McQuain

Lets think about those numbers

There can be a huge difference between the cost of a hit and a miss.

Could be 100x, if just L1 and main memory

Would you believe 99% hits is twice as good as 97%?

Consider:

 L1 cache hit time of 1 cycle

 L1 miss penalty of 100 cycles (to DRAM)

Average access time:

 97% L1 hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

 99% L1 hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

Cache Performance 8

 Computer Organization II CS@VT ©2005-2015 CS:APP & McQuain

Measuring Cache Performance

Components of CPU time:

Program execution cycles

Includes cache hit time

Memory stall cycles

Mainly from cache misses

With simplifying assumptions:

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

Cache Performance 9

 Computer Organization II CS@VT ©2005-2015 CS:APP & McQuain

Cache Performance Example

Given

 - Instruction-cache miss rate = 2%

 - Data-cache miss rate = 4%

 - Miss penalty = 100 cycles

 - Base CPI (with ideal cache performance) = 2

 - Load & stores are 36% of instructions

Miss cycles per instruction

 - Instruction-cache: 0.02 × 100 = 2

 - Data-cache: 0.36 × 0.04 × 100 = 1.44

Actual CPI = 2 + 2 + 1.44 = 5.44

 - Ideal CPI is 5.44/2 =2.72 times faster

 - We spend 3.44/5.44 = 63% of our execution time on memory stalls!

Cache Performance 10

 Computer Organization II CS@VT ©2005-2015 CS:APP & McQuain

Reduce Ideal CPI

What if we improved the datapath so that the average ideal CPI was reduced?

 - Instruction-cache miss rate = 2%

 - Data-cache miss rate = 4%

 - Miss penalty = 100 cycles

 - Base CPI (with ideal cache performance) = 1.5

 - Load & stores are 36% of instructions

Miss cycles per instruction will still be the same as before.

Actual CPI = 1.5 + 2 + 1.44 = 4.94

 - Ideal CPI is 4.94/1.5 =3.29 times faster

 - We spend 3.44/4.94 = 70% of our execution time on memory stalls!

Cache Performance 11

 Computer Organization II CS@VT ©2005-2015 CS:APP & McQuain

Performance Summary

When CPU performance increases

 - effect of miss penalty becomes more significant

Decreasing base CPI

 - greater proportion of time spent on memory stalls

Increasing clock rate

 - memory stalls account for more CPU cycles

Can’t neglect cache behavior when evaluating system performance

Cache Performance 12

 Computer Organization II CS@VT ©2005-2015 CS:APP & McQuain

Multilevel Cache Considerations

Primary cache

– Focus on minimal hit time

L-2 cache

– Focus on low miss rate to avoid main memory access

– Hit time has less overall impact

Results

– L-1 cache usually smaller than a single cache

– L-1 block size smaller than L-2 block size

Cache Performance 13

 Computer Organization II CS@VT ©2005-2015 CS:APP & McQuain

Intel Core i7 Cache Hierarchy

Regs

L1

d-cache

L1

i-cache

L2 unified

cache

Core 0

Regs

L1

d-cache

L1

i-cache

L2 unified

cache

Core 3

…

L3 unified cache

(shared by all cores)

Main memory

Processor package

2700 Series

L1 i-cache and d-cache:

32 KB, 8-way,
Access: 4 cycles

L2 unified cache:

 256 KB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 25-40
cycles

Block size: 64 bytes for
all caches.

Cache Performance 14

 Computer Organization II CS@VT ©2005-2015 CS:APP & McQuain

I-7 Sandybridge

Cache Performance 15

 Computer Organization II CS@VT ©2005-2015 CS:APP & McQuain

What about writes?

Multiple copies of data may exist:

 - L1

 - L2

 - DRAM

 - Disk

Remember: each level of the hierarchy is a subset of the one below it.

Suppose we write to a data block that's in L1.

If we update only the copy in L1, then we will have multiple, inconsistent versions!

If we update all the copies, we'll incur a substantial time penalty!

And what if we write to a data block that's not in L1?

Cache Performance 16

 Computer Organization II CS@VT ©2005-2015 CS:APP & McQuain

What about writes?

What to do on a write-hit?

 Write-through (write immediately to memory)

 Write-back (defer write to memory until replacement of line)

 Need a dirty bit (cached line is different from memory or not)

Cache Performance 17

 Computer Organization II CS@VT ©2005-2015 CS:APP & McQuain

What about writes?

What to do on a write-miss?

 Write-allocate (load into cache, update line in cache)

 Good if more writes to the location follow

 No-write-allocate (writes immediately to memory)

Typical combinations:

 Write-through + No-write-allocate

 Write-back + Write-allocate

