
CS 2506 Computer Organization II C02: Parsing MIPS32 Assembly Instructions

Version 2.00 This is a purely individual assignment! 1

C Programming String Parsing and Table Lookup

For this assignment, you will implement a C function that parses a restricted subset of MIPS assembly instructions and

prints out information relevant to translating those instructions into machine code. In particular, you will be concerned with

MIPS assembly instructions, expressed in one of the following forms:

 R-format: mnemonic reg1, reg2, reg3

 I-format: mnemonic reg1, reg2, immediate (addi, andi, ori)

 mnemonic reg1, immediate (lui)

 mnemonic reg1, offset(reg2) (lw)

where mnemonic is one of the following MIPS32 mnemonics:

 add addi and andi lui lw or ori sub

and reg1, reg2 and reg3 are each one of the following MIPS registers:

 $t0, $t1, $t2, $t3, $s0, $s1, $s2, $s3

and immediate and offset are integers in the range -32768 to 32767. The elements of each instruction are separated

by whitespace and commas, as shown. Whitespace can be any mixture of spaces and tab characters.

The instructions you are concerned with in this assignment can be classified as follows:

 R-format: add and or sub

 I-format: addi andi lui lw ori

The operand syntax of the lui and lw instructions are special, as shown above.

In order to decide how to interpret an assembly instruction, we would need to know exactly which assembly instruction we

are dealing with, since different assembly instructions follow different patterns. For example, if the mnemonic is add, we

have an R-format machine instruction, and we know that the instruction has three parameters that are all register names.

How do we know these things? From consulting the available MIPS32 references, chiefly the MIPS32 Architecture

Volume 2: the MIPS32 Instruction Set, which is available on the Resources page of the course website. From there, we

find that add is an R-format instruction, and that the add assembly instruction always has the form:

add $rd, $rs, $rt

We also find that executing this instruction results in the assignment: $rd = $rs + $rt.

Moreover, we find that this is expressed in binary machine format as:

We also find, from other MIPS32 references, how the symbolic register names map to integer register numbers, so if we are

given a specific instance of the add assembly instruction, we can determine all the components of the binary

representation.

A later assignment will require you to implement a C program that translates complete MIPS32 assembly programs into

machine code. For now, we will focus on the narrower problem of determining the pieces that make up the representations

of a small selection of assembly instructions.

R 1 0 0 0 0 0 0 0 0 0 0 rd rt rs 0 0 0 0 0 0

31 30 29 28 27 26 5 4 3 2 1 0 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

CS 2506 Computer Organization II C02: Parsing MIPS32 Assembly Instructions

Version 2.00 This is a purely individual assignment! 2

This assignment is, in some ways, a warm-up for the assembler project. Therefore, if you give careful thought to your

design, you can produce lots of C code that can be plugged into the assembler. And, if you choose to do this in minimalist

fashion, you'll gain little or nothing towards implementing the assembler.

Given one of the MIPS32 assembly instructions mentioned earlier, you will create a C struct variable that contains

information relevant to the specific assembly instruction and its representation in machine code. We will use the following

user-defined C type to represent your analysis of the given instruction:

/** Represents the possible field values for a MIPS32 machine instruction.

 *

 * A ParseResult object is said to be proper iff:

 *

 * - Each of the char* members is either NULL or points to a zero-

 * terminated C-string.

 * - If ASMInstruction is not NULL, the contents of the array represent

 * a MIPS32 assembly instruction.

 * - If ASMInstruction is not NULL, the other fields are set to properly

 * represent the corrsponding fields of the MIPS32 assembly instruction

 * stored in ASMInstruction.

 * - Each field that is not relevant to the MIPS32 assembly instruction

 * is set as described in the comments below.

 */

struct _ParseResult {

 // The assembly code portion

 // These are malloc'd zero-terminated C-strings

 char* ASMInstruction; // the assembly instruction, as a C-string

 char* Mnemonic; // the symbolic name of the instruction

 char* rdName; // the symbolic names of the registers, as C-strings;

 char* rsName; // NULL if the register field is not specified

 char* rtName; // in the assembly instruction

 // The following are integer values

 int16_t Imm; // the immediate field, as a signed integer;

 // 0 if not present

 uint8_t rd; // the three register fields, as small unsigned integers;

 uint8_t rs; // 255 if not present

 uint8_t rt;

 // The computed machine code portion

 // These are malloc'd zero-terminated C-strings

 char* Opcode; // the opcode field bits

 char* Funct; // the funct field bits

 char* RD; // the bit representations of the register numbers;

 char* RS; // NULL if not specified in the assembly instruction

 char* RT;

 char* IMM; // 2's complement bit representation of the immediate;

 // NULL if not present

};

This type includes every possible component related to any of the assembly instructions in which we are interested.

However, no particular MIPS32 assembly instruction actually has all of the possible components defined in this type, so we

will stipulate that are unused will be set to default values, given in the comments above.

CS 2506 Computer Organization II C02: Parsing MIPS32 Assembly Instructions

Version 2.00 This is a purely individual assignment! 3

For example, suppose you have the assembly instruction: add $s3, $t1, $t0

The corresponding ParseResult object should contain the following information, parsed directly from the given

instruction:

ASMInstruction --> "add $s3, $t1, $t0"

Mnemonic --> "add"

rdName --> "$s3"

rsName --> "$t1"

rtName --> "$t0"

The following information can be obtained from properly-constructed static lookup tables:

rd == 19

rs == 9

rt == 8

Opcode --> "000000"

Funct --> "100000"

The following information can be computed from the values above:

RD --> "10011"

RS --> "01001"

RT --> "01000"

Finally, the remaining fields are just set to their specified defaults:

Imm == 0

IMM == NULL

Given the assembly instruction "addi $t0, $s2, -42" , we find it has the form:

addi $rt, $rs, immediate

And, addi is an I-format instruction, whose binary representation is:

We would obtain the following values:

ASMInstruction --> "addi $t0, $s2, -42"

Mnemonic --> "addi"

rdName == NULL

rsName --> "$s2"

rtName --> "$t0"

rd == 255

rs == 8

rt == 18

Opcode --> "001000"

Funct == NULL

RD == NULL

RS --> "01000"

RT --> "10010"

Imm --> "-42"

IMM == "1111111111010110"

16-bit immediate rt rs 0 0 1 0 0 0

I

31 30 29 28 27 26 25 24 23 22 21 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 20 19 18 17 16

CS 2506 Computer Organization II C02: Parsing MIPS32 Assembly Instructions

Version 2.00 This is a purely individual assignment! 4

Coding Requirements

You will implement the following C function:

/** Breaks up given the MIPS32 assembly instruction and creates a proper

 * ParseResult object storing information about that instruction.

 *

 * Pre: pASM points to an array holding the representation of a

 * syntactically valid assembly instruction, whose mnemonic is

 * one of the following:

 *

 * add addi and andi lui lw or ori sub

 *

 * The instruction will be formatted as follows:

 *

 * <mnemonic><ws><operand1>,<ws><operand2>,<ws>...

 *

 * where <ws> is an arbitrary mixture of space and tab characters.

 *

 * Returns:

 * A pointer to a proper ParseResult object whose fields have been

 * correctly initialized to correspond to the target of pASM.

 */

ParseResult* parseASM(const char* const pASM);

The stated precondition will be satisfied whenever the testing code calls your implementation. Your implementation must

satisfy the stated return specification, and must not violate const or create memory violations of any kind.

You are required* to implement static lookup tables and use them to determine instruction mnemonics, and to map register

numbers to register names. See the discussion of static lookup tables later in this specification.

You are required* to implement your solution in logically-cohesive modules (paired .h and .c files), where each module

encapsulates the code and data necessary to perform one logically-necessary task. For example, a module might

encapsulate the task of mapping register numbers to symbolic names, or the task of mapping mnemonics to opcodes, etc.

You are also required* to provide a "destructor" function for the ParseResult type; that is, a function that deallocates

all the dynamic content from a ParseResults object. The interface for this function must be:

/** Frees the dynamic content of a ParseResult object.

 *

 * Pre: pPR points to a proper ParseResult object.

 * Post: All of the dynamically-allocated arrays in *pPR have been

 * deallocated.

 * *pPR is proper.

 *

 * Comments:

 * - The function has no information about whether *pPR has been

 * allocated dynamically, so it cannot risk attempting to

 * deallocate *pPR.

 * - The function is intended to provide the user with a simple

 * way to free memory; the user may or may not reuse *pPR. So,

 * the function does set the pointers in *pPR to NULL.

 */

void clearResult(ParseResult* const pPR);

The test harness will call clearResult() at appropriate times during testing. If you have correctly implemented the

function, and otherwise coded your solution correctly, tests run on valgrind will not indicate any memory leaks.

CS 2506 Computer Organization II C02: Parsing MIPS32 Assembly Instructions

Version 2.00 This is a purely individual assignment! 5

We will require* your solution to achieve a "clean" run on valgrind. See the discussion of Valgrind below.

Finally, this is not a requirement, but you are strongly advised to use calloc() when you allocate dynamically, rather

than malloc(). This will guarantee your dynamically-allocated memory is zeroed when it's allocated, and that may help

prevent certain errors.

* "Required" here means that this will be checked by a human being after your solution has been autograded. The

automated evaluation will certainly not check for these things. Failure to satisfy these requirements will result in

deductions from your autograding score; the potential size of those deductions is not being specified in advance (but you

will not be happy with them).

Static Lookup Tables in C

Consider implementing a program that will organize and support searches of a fixed collection of data records. For

example, if the data records involve geographic features, we might employ a struct type:

// GData.h

...

struct _GData {

 char* Name;

 char* State;

 ...

 uint16_t Elevation;

};

typedef struct _GData GData;

...

We might then initialize an array of GData objects by taking advantage of the ability to initialize struct variables at the

point they are declared:

// GData.c

#define NUMRECORDS 50

static GData GISTable[NUMRECORDS] = {

 {"New York", "NY", ..., 33},

 {"Los Angeles", "CA", ..., 305},

 ...

 {"Chicago", "IL", ..., 594}

};

We place the table in the .c file and make it static so it's protected from direct access by user code in other files.

There's also a slight benefit due to the fact that static variables are initialized when the program loads, rather than by the

execution of code, like a loop while the program is running.

Then we could implement any search functions we thought were appropriate from the user perspective, such as:

const GData* Find(const char* const Name, const char* const State);

Since struct types can be as complex as we like, the idea is applicable in any situation where we have a fixed set of data

records whose contents are known in advance.

CS 2506 Computer Organization II C02: Parsing MIPS32 Assembly Instructions

Version 2.00 This is a purely individual assignment! 6

Memory Management Requirements and Valgrind

Valgrind is a tool for detecting certain memory-related errors, including out of bounds accessed to dynamically-allocated

arrays and memory leaks (failure to deallocate memory that was allocated dynamically). A short introduction to Valgrind is

posted on the Resources page, and an extensive manual is available at the Valgrind project site (www.valgrind.org).

For best results, you should compile your C program with a debugging switch (-g or –ggdb3); this allows Valgrind to

provide more precise information about the sources of errors it detects. For example, I ran my solution for this project, with

one of the test cases, on Valgrind:

[wdm@centosvm parseMI]$ valgrind --leak-check=full --show-leak-kinds=all --log-file=vlog.txt

--track-origins=yes -v driver instr.txt parse.txt –rand

And, I got good news... there were no detected memory-related issues with my code:

==10669== Memcheck, a memory error detector

==10669== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.

==10669== Using Valgrind-3.10.0 and LibVEX; rerun with -h for copyright info

==10669== Command: driver instr.txt parse.txt -rand

==10669==

==10669== HEAP SUMMARY:

==10669== in use at exit: 0 bytes in 0 blocks

==10669== total heap usage: 275 allocs, 275 frees, 6,904 bytes allocated

==10669==

==10669== All heap blocks were freed -- no leaks are possible

==10669==

==10669== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 2 from 2)

==10669==

==10669== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 2 from 2)

And, I got good news... there were no detected memory-related issues with my code. That's the sort of results you want to

see when you try your solution with Valgrind.

On the other hand, here’s what I got from a student submission:

==4657== Memcheck, a memory error detector

==4657== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.

==4657== Using Valgrind-3.10.0 and LibVEX; rerun with -h for copyright info

==4657== Command: assemble C4TestFiles/test05.asm test05.o

==4657== Parent PID: 3924

==4657==

. . .

==4657== Invalid read of size 4

==4657== at 0x4E9FEA4: fclose@@GLIBC_2.2.5 (in /usr/lib64/libc-2.17.so)

==4657== by 0x400A8F: main (driver.c:115)

==4657== Address 0x51f6040 is 0 bytes inside a block of size 568 free'd

==4657== at 0x4C2AD17: free (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

==4657== by 0x4E9FFF4: fclose@@GLIBC_2.2.5 (in /usr/lib64/libc-2.17.so)

==4657== by 0x4009F7: main (assembler.c:97)

. . .

==4657==

==4657== Invalid write of size 8

==4657== at 0x4E9FF08: fclose@@GLIBC_2.2.5 (in /usr/lib64/libc-2.17.so)

==4657== by 0x400A8F: driver (assembler.c:115)

==4657== Address 0x51f6128 is 232 bytes inside a block of size 568 free'd

==4657== at 0x4C2AD17: free (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

==4657== by 0x4E9FFF4: fclose@@GLIBC_2.2.5 (in /usr/lib64/libc-2.17.so)

==4657== by 0x4009F7: main (assembler.c:97)

. . .

==4657==

==4657== HEAP SUMMARY:

==4657== in use at exit: 5,112 bytes in 9 blocks

==4657== total heap usage: 15 allocs, 7 frees, 8,208 bytes allocated

==4657==

. . .

==4657== 568 bytes in 1 blocks are still reachable in loss record 1 of 6

==4657== at 0x4C29BFD: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

==4657== by 0x4EA096C: __fopen_internal (in /usr/lib64/libc-2.17.so)

http://www.valgrind.org/

CS 2506 Computer Organization II C02: Parsing MIPS32 Assembly Instructions

Version 2.00 This is a purely individual assignment! 7

==4657== by 0x401349: makingTable (assembler.c:338)

==4657== by 0x400A1F: main (assembler.c:100)

==4657==

. . .

==4657== LEAK SUMMARY:

==4657== definitely lost: 0 bytes in 0 blocks

==4657== indirectly lost: 0 bytes in 0 blocks

==4657== possibly lost: 0 bytes in 0 blocks

==4657== still reachable: 5,112 bytes in 9 blocks

==4657== suppressed: 0 bytes in 0 blocks

==4657==

==4657== ERROR SUMMARY: 27 errors from 23 contexts (suppressed: 1 from 1)

Now, that solution needs some work… but the Valgrind output gives good clues.

Grading

Download the posted tar file, C02.tar from the course website and unpack it on a CentOS 7 system. You should receive

the following files:

driver.c driver for running all the tests and scoring; see embedded comments

ParseResult.h header file for supplied data type and associated function

ASMParser.h header file for required parsing function

ParseResult.c incomplete C source file for completing clearResult()

ASMParser.c incomplete C source file for completing parseASM()

Generate.h header file for test case generator

Generate.o 64-bit Linux object file for the test case generator

Grading.h header file for the grading code

Grading.o 64-bit Linux object file for the grading code

Unpack the posted tar file, and complete the implementation files (ASMParser.c and ParseResult.c) in the top-

level directory. You can then compile with the following commands:

gcc –o driver –std=c99 –Wall –ggdb3 *.c *.o

This will probably not work on CentOS 6, or other Linux distros, due to the presence of incompatible libraries, but it does

work on CentOS 7 and on rlogin.

You should also note that the posted code will, indeed, compile. And, if you execute it as is it will not perform correctly,

because the given implementation of parseASM() merely returns NULL.

What to submit

You will submit an uncompressed tar file containing your completed C implementation files (ASMParser.c and

ParseResult.c and any supporting .c and .h files you have written), and nothing else.

In a week or so, we will post a shell script that will automate the grading process. Once your solution passes the testing

code above, you should test your tar file with that shell script to be sure everything meets our requirements.

We will grade your submission with the posted test/grading harness, and we will make no allowances for submissions that

do not operate correctly with that. Be warned: we will use the original, posted versions of the header and .o files in

grading your submission, so you may encounter problems if you’ve modified any of those.

Make your submission to the posted link for the Curator system. Late submissions will be assessed a penalty of 10% per

diem.

CS 2506 Computer Organization II C02: Parsing MIPS32 Assembly Instructions

Version 2.00 This is a purely individual assignment! 8

Suggested resources

Aside from a good C language reference (see the Resources page on the course website), the following sources of

information should prove useful:

Computer Organization and Design: the Hardware/Software Interface

 good overall description of MIPS32 architecture, register names/numbers, etc.

MIPS32 Architecture Volume 2: the MIPS32 Instruction Set (on the Resources page)

 good details on specific MIPS32 assembly instructions and their representations

From the CS 2505 course website at:

http://courses.cs.vt.edu/~cs2505/summer2016/

you should consider the following notes:

Intro to Pointers http://courses.cs.vt.edu/cs2505/summer2015/Notes/T14_IntroPointers.pdf

C Pointer Finale http://courses.cs.vt.edu/cs2505/summer2015/Notes/T17_CPointerFinale.pdf

C struct Types http://courses.cs.vt.edu/cs2505/summer2015/Notes/T24_CstructTypes.pdf

C Strings http://courses.cs.vt.edu/~cs2505/summer2015/Notes/T15_CStrings.pdf

Some of the other notes on the basics of C and separate compilation may also be useful.

Pledge:

Each of your program submissions must be pledged to conform to the Honor Code requirements for this course.

Specifically, you must include the following pledge statement in the submitted file:

// On my honor:

//

// - I have not discussed the C language code in my program with

// anyone other than my instructor or the teaching assistants

// assigned to this course.

//

// - I have not used C language code obtained from another student,

// or any other unauthorized source, either modified or unmodified.

//

// - If any C language code or documentation used in my program

// was obtained from another source, such as a text book or course

// notes, that has been clearly noted with a proper citation in

// the comments of my program.

//

// <Student Name>

Failure to include the pledge statement may result in your submission being ignored.

http://courses.cs.vt.edu/cs2505/summer2015/Notes/T14_IntroPointers.pdf
http://courses.cs.vt.edu/cs2505/summer2015/Notes/T17_CPointerFinale.pdf
http://courses.cs.vt.edu/cs2505/summer2015/Notes/T24_CstructTypes.pdf
http://courses.cs.vt.edu/~cs2505/summer2015/Notes/T15_CStrings.pdf

