The D flip-flop takes one data input and updates its state Q , on a clock tick, according to the table:

D	Q	$\sim \mathrm{Q}$

0	0	1
1	1	1

In the following Logisim diagrams, the D flip-flops update state on the falling edge (when the clock goes from high to low).

The JK flip-flop takes two data inputs and updates its state Q, on a clock tick, according to the table:

J	K	Q	$\sim \mathrm{Q}$
------------	---------		
0	0	no change	
0	1	0	1
1	0	1	0
1	1	opposite	

In the following Logisim diagrams, the JK flip-flops update state on the falling edge (when the clock goes from high to low).

A recognizer accepts a binary input (typically a sequence of bits) and outputs a 1 if and only if the binary input matches a specific pattern.

You might think of a recognizer as being similar to a combination lock.

The output signal can be used to control the activation of another circuit.

We need to recognize a sequence of 4 bits, which suggests the following logical states:

A initial state/have not yet seen a 1
B last bit seen was 1, previous bit was not a 1
C last two bits seen were 1's
D last bit seen was 0 ; previous two bits were 1's

We recognize the pattern 1101 when we make a transition from state \mathbf{D} back to state \mathbf{B}.

Design: mapping states to labels
We need to represent each state by a binary string; a trivial mapping will do:

A	00
B	01
C	10
D	11

Design: state transition table
Recognizers 6

Design: choose a flip-flop
We will choose D flip-flops, since that simplifies the derivation of the next-state equations.

It is an interesting exercise to design an alternate implementation using JK flip-flops.

Design: next-state equations

$C 1$	$C 0$	I	N1	NO
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	0	1

$N 0=\overline{C 0} \cdot \overline{C 1} \cdot I+\overline{C 0} \cdot C 1 \cdot \bar{I}+\overline{C 0} \cdot C 1 \cdot I$
$N 1=C 0 \cdot \overline{C 1} \cdot I+\overline{C 0} \cdot C 1 \cdot \bar{I}+\overline{C 0} \cdot C 1 \cdot I=C 0 \cdot \overline{C 1} \cdot I+\overline{C 0} \cdot C 1$

Design: output equation

Curr State	Input Output		
Clon			
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$
N 0=\overline{C 0} \cdot \overline{C 1} \cdot I+\overline{C 0} \cdot C 1 \cdot \bar{I}+\overline{C 0} \cdot C 1 \cdot I
$$

$$
N 1=C 0 \cdot \overline{C 1} \cdot I+\overline{C 0} \cdot C 1
$$

Input

