Design: a mod-8 Counter

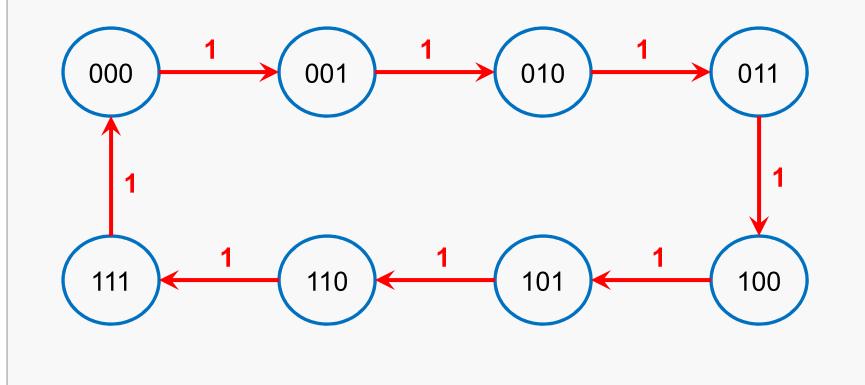
A mod-8 counter stores a integer value, and increments that value (say) on each clock tick, and wraps around to 0 if the previous stored value was 7.

So, the stored value follows a cycle:

000	001	010	011	100	101	110	111

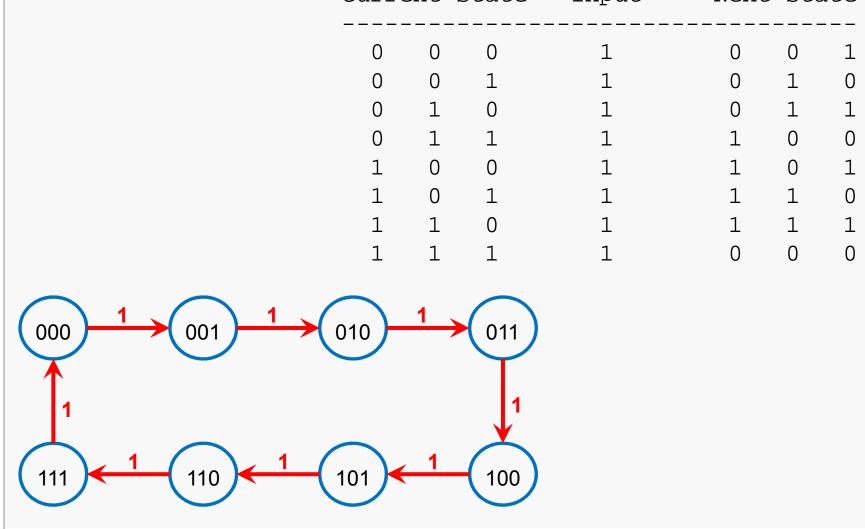
We need eight different states for our counter, one for each value from 0 to 7.

We can describe the operation by drawing a *state machine*. The nodes represent states and the edges represent transitions and are labeled with the input (clock in this case) that causes the transition to occur.



Design: State Table

A state table summarizes the state machine and is useful in deriving equations later: Current State Input Next State



CS@VT

Computer Organization I

Design: Deriving Equations

We will derive an equation for each of the next state functions:

	ent C1	State CO	Input	Nex N2	t St N1	ate N0	
0	0	0	1	0	0	1	
0	0	1	1	0	1	0	
0	1	0	1	0	1	1	
0	1	1	1	1	0	0	
1	0	0	1	1	0	1	
1	0	1	1	1	1	0	
1	1	0	1	1	1	1	
1	1	1	1	0		0	
N0 =	$\overline{C2}$	$\overline{C1} \cdot \overline{C0}$ +	$-\overline{C2} \cdot C1 \cdot \overline{C0} +$	$-C2\cdot\overline{c}$	$\overline{C1} \cdot \overline{C}$	$\bar{0} + C2$	$2 \cdot C1 \cdot \overline{C0} = \overline{C0}$
N1 =	$\overline{C2} \cdot \overline{C2}$	$\overline{C1} \cdot C0 +$	$\overline{C2} \cdot C1 \cdot \overline{C0} +$	$C2 \cdot \overline{C}$	$\overline{C1} \cdot C($) + C2	$\cdot C1 \cdot \overline{C0} = \overline{C1} \cdot C0 + C1 \cdot \overline{C0}$
			$-C2 \cdot \overline{C1} \cdot \overline{C0} +$		$\overline{C1} \cdot C$	$0 + C^{2}$	$2 \cdot C1 \cdot \overline{C0}$
=	$C2 \cdot$	$C1 \cdot C0 +$	$-C2 \cdot C1 + C2$	$\cdot C0$			

Design: Mapping to D Flip-flops

Since each state is represented by a 3-bit integer, we can represent the states by using a collection of three flip-flops (more-or-less a mini-register).

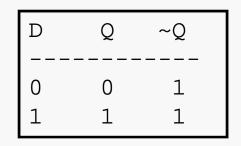
We will implement the circuit using D flip-flops, which make for a simple translation from the state table because a D flip-flop simply accepts its input value.

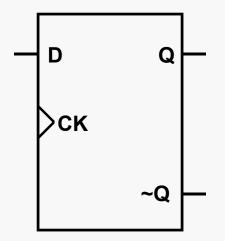
D	Q	~Q
0	0	0
0	1	0
1	0	1
1	1	1

So, we just need to feed each of the flip-flops the value of the appropriate next-state function equation derived earlier...

D Flip-flop

The D flip-flop takes one data input and updates its state Q, on a clock tick, according to the table:

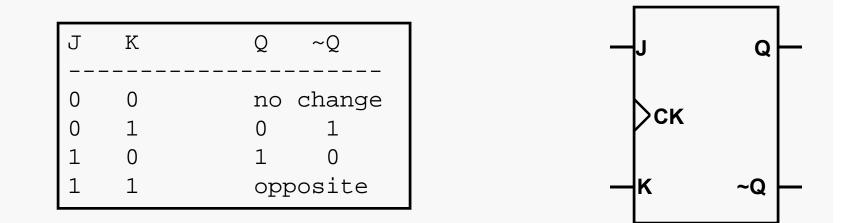




In the following Logisim diagrams, the D flip-flops update state on the falling edge (when the clock goes from high to low).

JK Flip-flop

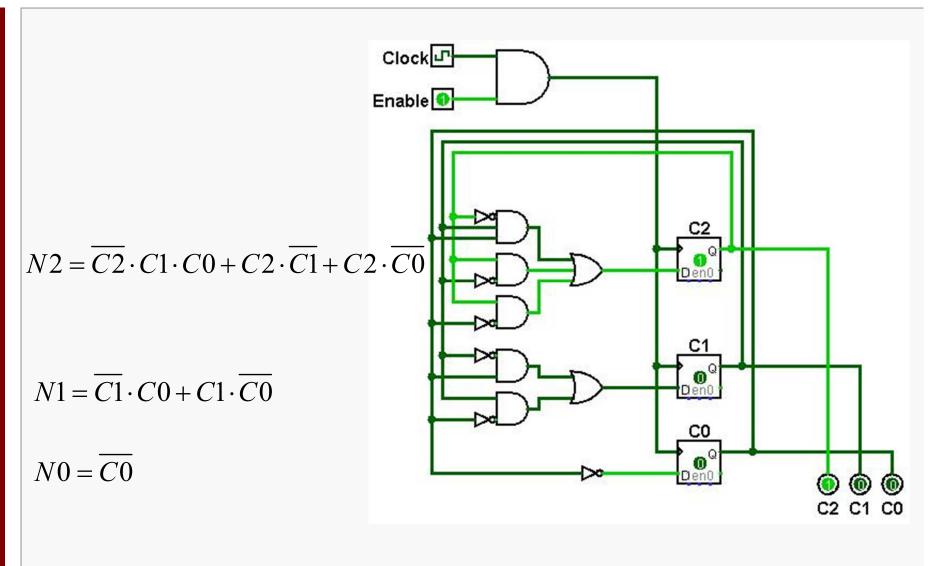
The JK flip-flop takes two data inputs and updates its state Q, on a clock tick, according to the table:



In the following Logisim diagrams, the JK flip-flops update state on the falling edge (when the clock goes from high to low).

Implementation

Counters 8



Computer Organization I

Design: Mapping to JK Flip-flops

We could also implement the circuit using JK flip-flops.

J	K	Q ~Q
0	0	no change
0	1	0 1
1	0	1 0
1	1	opposite

This will require a little more effort, since the inputs to the JK flip-flops cannot merely be set to equal the next state functions.

We must examine each current/next state pair and determine how/if the relevant flip-flop needs to change state:

			Flip-flop Inputs								
Curre	ent	State	Next	. Sta	ate	J2	К2	J1	K1	J0	КO
0	0	0	0	0	1	0	0	0	0	1	1
0	0	1	0	1	0	0	0	1	1	1	1
0	1	0	0	1	1	0	0	0	0	1	1
0	1	1	1	0	0	1	1	1	1	1	1
1	0	0	1	0	1	0	0	0	0	1	1
1	0	1	1	1	0	0	0	1	1	1	1
1	1	0	1	1	1	0	0	0	0	1	1
1	1	1	0	0	0	1	1	1	1	1	1

For this simple circuit, we either want the JK flip-flop to hold state (both inputs 0) or to toggle state (both inputs 1).

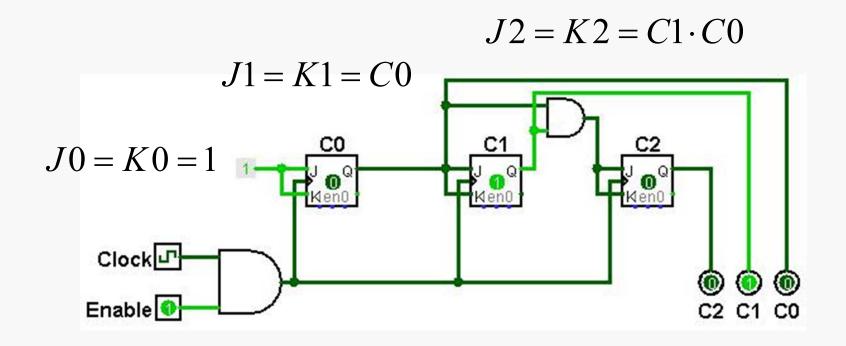
Design: Deriving JK Input Equations

We can derive equations in the usual manner from the previous table:

		ent C1	State CO	J2		p-flo J1	p Ing Kl	puts J0	к0
	0	0	0	0	0	0	0	1	1
	0	0	1	0	0	1	1	1	1
	0	1	0	0	0	0	0	1	1
	0	1	1	1	1	1	1	1	1
	1	0	0	0	0	0	0	1	1
	1	0	1	0	0	1	1	1	1
	1	1	0	0	0	0	0	1	1
J0 = K0 = 1	1	1	1	1	1	1	1	1	1
$J1 = K1 = \overline{C2} \cdot \overline{C1} \cdot$ $= C0$ $J2 = K2 = \overline{C2} \cdot C1$			_				0+0	C2·C	C1 · C0

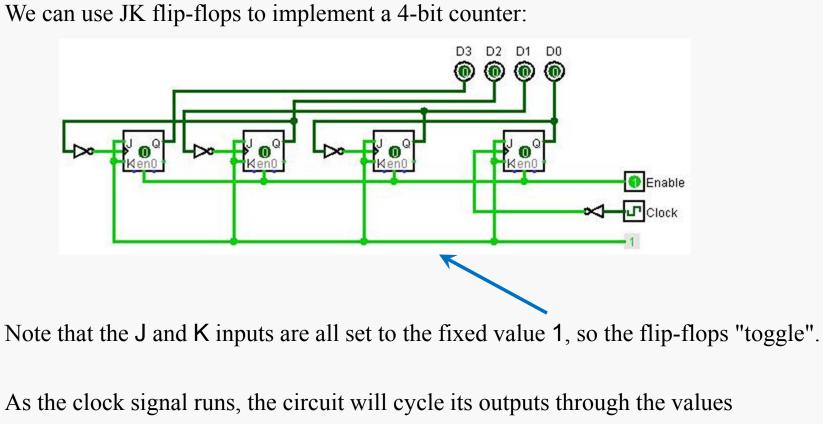
Implementation

Counters 12



Computer Organization I

A mod-16 Counter



0000, 0001, 0010, . . . , 1111

and then repeat the pattern.

So, it counts clock ticks, modulo 16.

mod-16 Counter: first tick

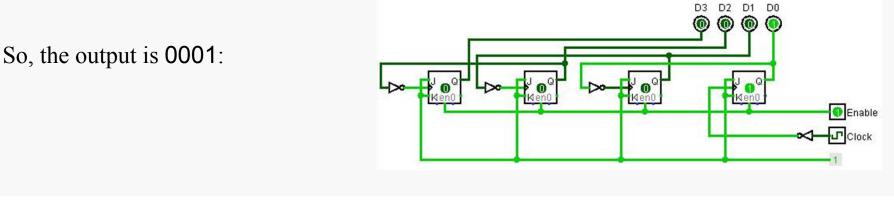
Enable

D3 D2 D1 D0

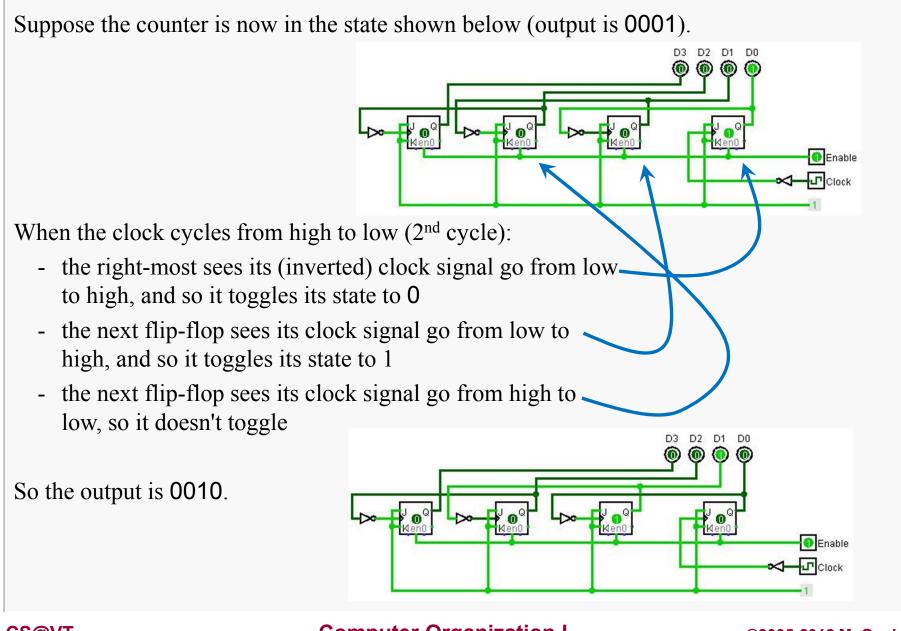
Suppose the counter is in the initial state shown below (output is 0000).

When the clock cycles from high to low:

- the right-most sees its (inverted) clock signal go from low to high, and so it toggles its state to 1
- the next flip-flop sees its clock signal go from high to _____
 low, and so it doesn't toggle
- and so, neither do the other flip-flops...



mod-16 Counter: second tick

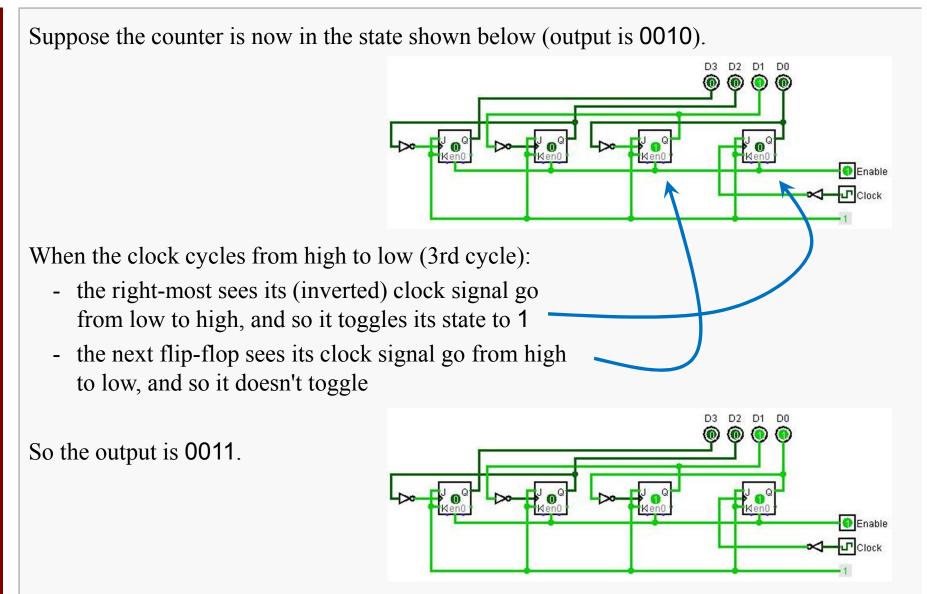


CS@VT

Computer Organization I

mod-16 Counter: third tick

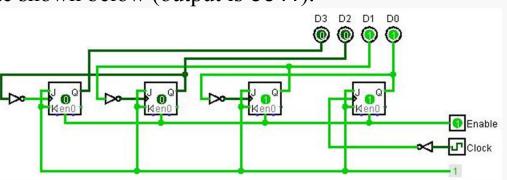
CS@VT



Computer Organization I

mod-16 Counter: fourth tick

Suppose the counter is now in the state shown below (output is 0011).



When the clock cycles from high to low (4th cycle):

- the right-most sees its (inverted) clock signal go from low to high, and so it toggles its state to 0
- the next flip-flop sees its clock signal go from low to high, and so it toggles its state to 0
- the next flip-flop sees its clock signal go from low to high, and so it toggles its state to 1

So the output is 0100.

