
x86 Overview

Computer Organization I

1

CS@VT ©2005-2012 McQuain

The von Neumann Machine

1945: John von Neumann

– Wrote a report on the stored program concept, known as the First Draft of a Report on 

EDVAC 

– also Alan Turing… Konrad Zuse… Eckert & Mauchly…

The basic structure proposed in the draft became known as the “von Neumann machine” 

(or model).

– a memory, containing instructions and data

– a processing unit, for performing arithmetic and logical operations

– a control unit, for interpreting instructions



x86 Overview

Computer Organization I

2

CS@VT ©2005-2012 McQuain

The von Neumann Machine

Abstraction of von Neumann Architecture

decodes current instruction,

manages processing unit to 

carry out instruction

stores both program 

instructions and data

program counter:  points to 

the next instruction to be 

fetched

instruction register:  

stores current 

instruction



x86 Overview

Computer Organization I

3

CS@VT ©2005-2012 McQuain

Intel x86 History

Totally dominate laptop/desktop/server market

Evolutionary design

– Backwards compatible up until 8086, introduced in 1978

– Added more features as time goes on

Complex instruction set computer (CISC)

– Many different instructions with many different formats

� But, only small subset encountered with Linux programs

– Hard to match performance of Reduced Instruction Set Computers (RISC)

– But, Intel has done just that!

� In terms of speed.  Less so for low power.



x86 Overview

Computer Organization I

4

CS@VT ©2005-2012 McQuain

Intel x86 History

Name Date Transistors MHz

8086 1978 29K 5-10

– First 16-bit processor.  Basis for IBM PC & DOS

– 1MB address space

80386 1985 275K 16-33

– First 32 bit processor , referred to as IA32

– Added “flat addressing”

– Capable of running Unix

– 32-bit Linux/gcc uses no instructions introduced in later models

Pentium 4F 2004 125M 2800-3800

– First 64-bit processor, referred to as x86-64

Core i7 2008 731M 2667-3333

– Our shark machines



x86 Overview

Computer Organization I

5

CS@VT ©2005-2012 McQuain

Intel x86 History

X86-64 / EM64t

X86-32/IA32

X86-16 8086

286

386

486

Pentium

Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo

Core i7

time

Architectures Processors

MMX

SSE

SSE2

SSE3

SSE4



x86 Overview

Computer Organization I

6

CS@VT ©2005-2012 McQuain

Intel x86 History

Intel Attempted Radical Shift from IA32 to IA64

– Totally different architecture (Itanium)

– Executes IA32 code only as legacy

– Performance disappointing

AMD Stepped in with Evolutionary Solution

– x86-64 (now called “AMD64”)

Intel Felt Obligated to Focus on IA64

– Hard to admit mistake or that AMD's approach is better

2004: Intel Announces EM64T extension to IA32

– Extended Memory 64-bit Technology

– Almost identical to x86-64!

All but low-end x86 processors support x86-64

– But, lots of code still runs in 32-bit mode



x86 Overview

Computer Organization I

7

CS@VT ©2005-2012 McQuain

von Neumann View of x86 

CPU

PC
Registers

Memory

Object Code

Program Data

OS Data

Addresses

Data

Instructions

Stack

Condition

Codes



x86 Overview

Computer Organization I

8

CS@VT ©2005-2012 McQuain

High-level x86 CPU

Programmer-Visible State

– PC: Program counter
� Address of next instruction

� Called “EIP” (IA32) or “RIP” (x86-64)

– Register file
� Heavily used program data

– Condition codes
� Store status information about most 

recent arithmetic operation

� Used for conditional branching

CPU

PC
Registers

Condition

Codes



x86 Overview

Computer Organization I

9

CS@VT ©2005-2012 McQuain

IA32 Integer Registers

CPU

PC
Registers

Condition

Codes %eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers

(backwards compatibility)

g
e

n
e

ra
l 

p
u

rp
o

se



x86 Overview

Computer Organization I

10

CS@VT ©2005-2012 McQuain

High-level x86 Memory

Memory

Object Code

Program Data

OS Data

Stack

– Memory

� Byte addressable array

� Code, user data, (some) OS data

� Includes stack used to support 

procedures



x86 Overview

Computer Organization I

11

CS@VT ©2005-2012 McQuain

Programming the Machine

But the hardware only 

"understands" binary 

representations

// C code
. . .
int imax(int first, int second) {

if ( first >= second )
return first;

return second;
}



x86 Overview

Computer Organization I

12

CS@VT ©2005-2012 McQuain

Programming the Machine

int imax(int first, int second) {

if ( first >= second )
return first;

return second;
}

457f464c010100010000000000000000
00010003000100000000000000000000
00bc0000000000000034000000000028
0009000689558be50845453b7c0c8b05
084503eb458b5d0c00c3000047004343
203a55287562746e2f75694c616e6f72
3420352e322e382d62756e7575742934
. . .

But who wants to 

program in binary?

gcc -O0 -c -m32 -std=c99imax.c



x86 Overview

Computer Organization I

13

CS@VT ©2005-2012 McQuain

Programming the Machine

Solution:

translate high-level language code 

into intermediate-level code which is 

more human-friendly,

then translate that "assembly" code 

into the machine's langauge.

int imax(int first, int second) {

if ( first >= second )
return first;

return second;
}

. . .
imax:

pushl %ebp
movl %esp, %ebp

movl 8(%ebp), %eax
cmpl 12(%ebp), %eax
jl .L2
movl 8(%ebp), %eax
jmp .L3

.L2:
movl 12(%ebp), %eax

.L3:
popl %ebp
ret

. . .



x86 Overview

Computer Organization I

14

CS@VT ©2005-2012 McQuain

Explanation: moving data

movl

Imm

Reg

Mem

Reg

Mem

Reg

Mem

Reg

Source Dest C Analog

movl $0x4,%eax tmp = 0x4;

movl $-147,(%eax) *p = -147;

movl %eax,%edx tmp2 = tmp1;

movl %eax,(%edx) *p = tmp;

movl (%eax),%edx tmp = *p;

Src,Dest



x86 Overview

Computer Organization I

15

CS@VT ©2005-2012 McQuain

x86-64 Integer Registers

%rsp

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

– Extend existing registers.  Add 8 new ones.

– Make %ebp/%rbp general purpose



x86 Overview

Computer Organization I

16

CS@VT ©2005-2012 McQuain

x86-64 Example

. . .
movl %edi, -4(%rbp)
movl %esi, -8(%rbp)
movl -4(%rbp), %eax
cmpl -8(%rbp), %eax
jl .L2
movl -4(%rbp), %eax
jmp .L3

.L2:
movl -8(%rbp), %eax

.L3:

. . .

int imax(int first, int second) {

if ( first >= second )
return first;

return second;
}


