
CS 2505 Computer Organization I Test 2

A 1

Instructions:

 Print your name in the space provided below.

 This examination is closed book and closed notes, aside from the permitted one-page fact sheet. Your fact sheet

may contain definitions and examples, but it may not contain questions and/or answers taken from old tests or

homework. You may include examples from the course notes.

 No calculators or other electronic devices may be used. The use of any such device will be interpreted as an

indication that you are finished with the test and your test form will be collected immediately.

 Answer each question in the space provided. If you need to continue an answer onto the back of a page, clearly

indicate that and label the continuation with the question number.

 If you want partial credit, justify your answers, even when justification is not explicitly required.

 There are 5 questions, some with multiple parts, priced as marked. The maximum score is 100.

 When you have completed the test, sign the pledge at the bottom of this page and turn in the test.

 If you brought a fact sheet to the test, write your name on it and turn it in with the test.

 Note that either failing to return this test, or discussing its content with a student who has not taken it is a

violation of the Honor Code.

Do not start the test until instructed to do so!

Name Solution

 printed

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 signed

CS 2505 Computer Organization I Test 2

A 2

xkcd.com

CS 2505 Computer Organization I Test 2

A 3

1. [14 points] Consider the following two C data types:

struct _RGB {

 uint8_t red;

 uint8_t green;

 uint8_t blue;

};

typedef struct _RGB RGB;

struct _Pixel {

 int32_t x;

 int32_t y;

 RGB color;

};

typedef struct _Pixel Pixel;

Implement the C function shown below, conforming to the header comment. Violations of the restrictions will earn a

score of zero. Be careful of syntax in your answer!

The function could be called in this manner:

const int nPix = 1000;

Pixel *Pix = malloc(nPix * sizeof(Pixel));

// initialize Pix array

RGB averageRGB;

avgRGB(&averageRGB, Pix, nPix);

/** Computes an "average" RGB for an array of Pixel objects.

 *

 * Pre: pRGB points to an RGB object

 * Pix points to an array of nPix Pixel objects

 * Post: *pRGB has been updated to store the average red, green and

 * blue values represented in the array Pix[]

 * Restrictions:

 * You may only use pointer syntax when accessing the elements in

 * the array of Pixel objects.

 */

void avgRGB(RGB* const pRGB, const Pixel* Pix, uint32_t nPix) {

 const Pixel* current = Pix;

 uint32_t sumRed = 0, sumBlue = 0, sumGreen = 0;

 for (uint32_t idx = 0; idx < nPix; idx++) {

 sumRed += current->color.red;

 sumGreen += current->color.green;

 SumBlue += current->color.blue;

 current++;

 }

 pRGB->red = sumRed / nPix;

 pRGB->green = sumGreen / nPix;

 pRGB->blue = sumBlue / nPix;

}

Notes:

 A uint8_t will overflow if its value exceeds 255, so you really need to use a "wider" type to

accumulate the sums (I did not deduct points for that).

 Nothing in the preconditions says that the fields in *pRGB have been initialized, so you need to set

them to zero if you use them to accumulate the sums.

 The "dot" operator must have the name of a struct variable on its left and the name of a field of

that struct variable on its right

 current points to a Pixel object; Pixel objects have a field named color of type RGB; so you

access the red field of the color object by writing current->color.red.

CS 2505 Computer Organization I Test 2

A 4

2. Suppose a hexdump of a memory region shows the following bytes:

 0 1 2 3 4 5 6 7 8 9 A B C D E F

--

 0 | D9 86 B5 2F C5 52 A2 3E 8C 31 3B 1B 27 94 EE 5E

 1 | 69 2F 8E FC AF F5 F5 56 C0 FE 20 A7 C4 45 9C 9D

 2 | CB 51 CC 91 A3 6E CF 30 9F 0A 4B C6 C6 39 24 07

 3 | 68 B3 04 18 A8 B5 6E 69 B3 8E 10 78 D3 AC 15 9F

a) [8 points] If the four bytes here are interpreted to represent the value of an int32_t variable, is that variable

negative or nonnegative? Justify your conclusion.

Integers are stored in little-endian order (on our machines); the high byte is "2F", so the high

nybble is 0010, and the high bit is 0, so the value is nonnegative.

The question did not specify whether the data was stored in big-endian or little-endian order.

Little-endian order is the rational assumption, given the nature of current systems. If you

explicitly said you were assuming big-endian order, I intended to give full credit. If your

answer implied you assumed that, but you were not explicit, I made a deduction.

b) [8 points] Suppose that the uint8_t* variable P points to the first byte in the memory region shown above.

Complete the C statement below so that the variable X is assigned the value referred to in part a).

uint32_t X = *(uint32_t*)P;

To get a uint32_t value, you need to dereference a pointer whose target type is 4 bytes wide,

hence the typecast of P to uint32_t*.

c) [8 points] Suppose that the uint32_t* variable Q points to the first byte in the memory region shown above.

Complete the C statement below so that the pointer R will point to this byte in the memory region.

uint8_t* R = (uint8_t*)Q + 8;

The byte in question is 8 bytes after the target of Q; I typecast to get a pointer with a 1-

byte target, then added 8. Other solutions are possible. There's no dereference because we

want to make R point to the correct byte, not give R the value of that byte.

CS 2505 Computer Organization I Test 2

A 5

d) [12 points] Implement the following function, using only pointer notation:

/** Returns the value of the first byte in the memory region that occurs

 * in two or more consecutive locations. For the region given above,

 * the function would return the value 0xF5.

 *

 * Pre: P points to the first byte of a block of length nBytes.

 */

uint8_t firstDupe(const uint8_t* P, uint32_t nBytes) {

 for (uint32_t offset = 0; offset < nBytes - 1; offset++) {

 if (*(P + offset) == *(P + offset + 1)) {

 return *(P + offset);

 }

 }

 return 0;

}

There's a basic flaw in the question, since there's no value reserved (or specified) to return if no suitable

pair of bytes is found… I was not picky about what you returned in that case. It would have been better to

return a pointer to the relevant (first) byte; then NULL could have been used to indicate no pair was found.

Some errors (common or otherwise):

 Not allowing for the possibility that no match would be found… no matter what you return in that

case, you cannot just assume there will be a match.

 Going one byte of bounds if the traversal reaches the end of the data region.

 Not stopping with the first match.

 Using array index notation instead of pointer notation (read the instructions).

CS 2505 Computer Organization I Test 2

A 6

3. The short C function shown below compiles to the assembly code shown below:

int q3(int x, int y) {

 int a = x + y; // 1

 int b = x - y; // 2

 return a * b; // 3

}

q3:

 pushq %rbp # 1

 movq %rsp, %rbp # 2

 subq $24, %rsp # 3

 movl %edi, -20(%rbp) # 4

 movl %esi, -24(%rbp) # 5

 movl -24(%rbp), %eax # 6

 movl -20(%rbp), %edx # 7

 addl %edx, %eax # 8

 movl %eax, -4(%rbp) # 9

 movl -24(%rbp), %eax # 10

 movl -20(%rbp), %edx # 11

 subl %eax, %edx # 12

 movl %edx, %eax # 13

 movl %eax, -8(%rbp) # 14

 movl -4(%rbp), %eax # 15

 imull -8(%rbp), %eax # 16

 leave # 17

 ret # 18

a) [6 points] Line 1 of the C code is translated into lines 6 through 9 of the assembly code. Why does gcc chose to use

movl and addl instructions for this, but chooses movq and subq instructions for lines 2 and 3 of the assembly

code?

Instructions 2 and 3 are manipulating 8-byte pointer values in registers rsp and rbp;

instructions 6 through 9 are manipulating the parameters x and y and the local variable a,

which are 4-byte int values.

The question was about WHY the compiler chose the specific instructions, not about the

EFFECT of that choice. Many answers did not relate the choice to the data types that were

being manipulated.

b) [6 points] In relation to the C code, what is the assembly instruction in line 16 doing?

Computing a * b and placing it in the eax register to be the return value from q3().

There were two parts to a complete answer, the product of the parameters is being computed,

and the return value is being set. Most answers did not address the second issue.

c) [6 points] Many of the assembly instructions shown above access registers. Which of these assembly instructions

access RAM (and possibly registers as well)? (Just list the numbers of the relevant instructions.)

1, 4, 5, 6, 7, 9, 10, 11, 14, 15, 16, 18

1 pushes a value to the stack; 18 pops a value from the stack; the stack is stored RAM.

Each of the other instructions listed above explicitly uses an address expression as a

parameter.

CS 2505 Computer Organization I Test 2

A 7

d) [8 points] Using the variable names from the C code, show what (if anything) is stored at each occupied location in

the stack frame for the function q3. If a frame location is not occupied, leave it blank.

rbp old value of rbp

rbp - 4 a

rbp - 8 b

rbp - 12

rbp - 16

rbp - 20 x

rbp - 24 y

rbp - 28

The assembly code shows the two parameters, x and y, being copied to the stack frame at

addresses rbp - 20 and rbp - 24, respectively (lines 4 and 5).

The addl instruction (line 8) is computing x + y; the following movl instruction is storing that

sum to rbp - 4 on the stack, which is must be where a is stored.

Similarly, the subl instruction (line 12) is computing x - y; the following movl instruction is

storing that value to rbp - 8 on the stack, which must be where b is stored.

CS 2505 Computer Organization I Test 2

A 8

4. [12 points] Implement the following C function, obeying all restrictions. Violations of the restrictions will earn a score of

zero.

/** Determines whether every byte in the word N represents an even value.

 *

 * Allowed operations: ! ~ & | ^ << >>

 * No more than 20 uses of operators.

 * No use of loops, if, if-else, switches.

 * No declarations of constants wider than one byte.

 *

 * Returns 1 if every byte represents an even value, 0 otherwise.

 *

 * Examples:

 * 00000000 00000000 00000000 00000000 : 1

 * 00000000 00001110 01100010 10000010 : 1

 * 00000011 00000000 00000001 00000110 : 0

 * 01000010 10000000 00000000 00000001 : 0

 */

int bytesAreEven(int N) {

 int lowBitMask = 0x01;

 int lowBit01 = N & lowBitMask;

 int lowBit02 = (N >> 8) & lowBitMask;

 int lowBit03 = (N >> 16) & lowBitMask;

 int lowBit04 = (N >> 24) & lowBitMask;

 return !(lowBit01 | lowBit02 | lowBit03 | lowBit04);

}

First point: a value is even iff its low bit is 0.

Therefore, we need to examine the low bit of each of the four bytes in N. We can isolate the low bit in a

byte by ANDing the byte with the mask 0000 0001, which is just 0x01.

Second point: 0x01 assigned to an int variable will be 00000000 00000000 00000000 00000001 in binary.

So:

 N & 0x01 gives us the low bit of N (i.e., of N's low byte)

 if we shift N 8 bits to the right and apply the same mask, we get the low bit of the next byte of N

 … and so forth

(The C right shift gives us an arithmetic shift, which will fill the high bits with 1s if N < 0, but the mask

wipes those to 0s, so we don’t have to worry about that.)

Now, the function should return 0 iff one or more of those low bits were 1. If we OR the four variables

found above, the result will be 1 if any of the low bits were 1, and will be 0 iff they were all 0.

So, we want to logically negate the OR of those variables.

There are alternate approaches that work, but if you shift the mask up (to the left) instead of shifting N

down (to the right), ORing might yield results that are not equal to either 0 or 1. So, if you took that

approach, you needed to "post-process" so that the function always returns 0 or 1.

CS 2505 Computer Organization I Test 2

A 9

5. [12 points] The assembly code below was produced by gcc from a simple C function. The comments give some clues

about what's going on in the function:

q5a:

 pushq %rbp # stack frame setup

 movq %rsp, %rbp

 subq $20, %rsp

 movl %edi, -20(%rbp) # int parameter: A

 andl $0x7FFFFFFF, -20(%rbp) # A = A & 0x7FFFFFFF (set high bit of A to 0)

 movl $0, -4(%rbp) # int local auto: B = 0

.L2:

 movl -20(%rbp), %eax # eax = A

 andl $15, %eax # eax = A & 0xF (low nybble of A)

 movl %eax, -8(%rbp) # int local auto: C = A & 0xF

 sarl $4, -20(%rbp) # A = A >> 4 (shift out low nybble of A)

 movl -8(%rbp), %eax # eax = C

 addl %eax, -4(%rbp) # B += C

 cmpl $5, -8(%rbp) # compare C to 5

 jg .L2 # if C > 5, goto L2 (repeat loop)

 movl -4(%rbp), %eax # set return value to B

 leave

 ret

Examine the assembly code and write a C version of the function q5a. Your answer may not use a goto statement.

int q5a(int A) {

 A = A & 0x7FFFFFFF;

 int B = 0;

 int C;

 do {

 C = A & 0xF;

 A = A >> 4;

 B += C;

 } while (C > 5);

 return B;

}

The comments I added in the assembly code above contain my analysis of the problem.

The backward jump to .L2 indicates there's a loop. The fact that there's no forward jump to the

loop test from before .L2 shows it is a do-while loop, not a while loop (or a for loop).

The given comments identified the parameter (A) and the local automatic variables (B and C), so

the rest was a matter of analyzing the individual assembly statements and then putting it all

together as C code.

