
CS 2505 Computer Organization I Test 1

A 1

Instructions:

 Print your name in the space provided below.

 This examination is closed book and closed notes, aside from the permitted one-page formula sheet. No

calculators or other electronic devices may be used. The use of any such device will be interpreted as an

indication that you are finished with the test and your test form will be collected immediately.

 Answer each question in the space provided. If you need to continue an answer onto the back of a page, clearly

indicate that and label the continuation with the question number.

 If you want partial credit, justify your answers, even when justification is not explicitly required.

 There are 6 questions, some with multiple parts, priced as marked. The maximum score is 100.

 When you have completed the test, sign the pledge at the bottom of this page and turn in the test.

 If you brought a fact sheet to the test, write your name on it and turn it in with the test.

 Note that either failing to return this test, or discussing its content with a student who has not taken it is a

violation of the Honor Code.

Do not start the test until instructed to do so!

Name Solution

 printed

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 signed

CS 2505 Computer Organization I Test 1

A 2

xkcd.com

CS 2505 Computer Organization I Test 1

A 3

1. Executing the command ls -l in a directory on my CentOS virtual machine, where my user id is wdm, shows me the

following information:

drw-------. 2 wdm wdm 6 Jun 17 15:25 backup

--w--w----. 1 wdm wdm 2620 Jun 17 15:19 bigMesa.c

-r--r--r--. 1 wdm wdm 1302 Jun 17 15:19 bigMesa.h

-rw-rw----. 1 wdm wdm 13407 Jun 17 15:29 driver

-rw-rw-r--. 1 wdm wdm 5456 Jun 17 15:19 driver.c

If I attempt to execute each of the following commands, it fails with an error message from the shell. Explain exactly why

each of these commands will fail.

a) [4 points] cat bigMesa.c

The cat command needs to read the contents of the file, and I don't have read permissions for

the file bigMesa.c.

b) [4 points] cp driver.c backup

I don't have execute permissions for the directory backup/.

This may be a bit confusing... you need execute permissions in order to execute a command on

the directory.

c) [4 points] cp driver.c bigMesa.h

I don't have write permissions for the file bigMesa.h.

The command would overwrite the existing file bigMesa.h with the file driver.c, and that would

require having write permissions for bigMesa.h. You might wonder if this would work if you did

have write permissions for bigMesa.h, since it seems the result would be two files named

driver.c in the same directory...

d) [4 points] ./driver

I don't have execute permissions for the file driver.

In Linux, whether it's possible to (attempt to) execute a file is determined solely by whether

the user has execute permissions for that file, not by the contents of the file.

CS 2505 Computer Organization I Test 1

A 4

2. [16 points] Write an implementation of a C function satisfies the given header comments:

/** Count the number of elements in A[] that are less than a given value.

 *

 * Pre: A[0:Sz-1] have been initialized

 * Ceiling has been initialized

 *

 * Post: The contents of A[] have not been modified

 *

 * Returns: number of elements in A[] that are < Ceiling

 *

 * You may use either array or pointer notation in your solution.

 */

int countLessThan(int A[], int Sz, int Ceiling) {

 int numLessThan = 0; // counter for number of elements

 // that are less than Ceiling

 for (int idx = 0; idx < Sz; idx++) { // use standard array traversal pattern

 if (Ceiling > A[idx]) { // test for elements less than Ceiling

 numLessThan++; // count them

 }

 }

 return numLessThan; // return counter

}

Here's a pointer-based solution:

int countLessThan(int A[], int Sz, int Ceiling) {

 int numLessThan = 0; // counter for number of elements

 // that are less than Ceiling

 for (int idx = 0; idx < Sz; idx++) { // use standard array traversal pattern

 if (Ceiling > *(A + idx)) { // test for elements less than Ceiling

 numLessThan++; // count them

 }

 }

 return numLessThan; // return counter

}

CS 2505 Computer Organization I Test 1

A 5

3. A developer is testing an implementation of a function, numUps(), described in comments in the code below:

#include <stdio.h>

int numUps(int A[], int Sz);

int main() {

 int List[20] = { -100, -90, -80, -70, -60, // prologue

 -7, 19, 12, 14, 17, 13, 21, 23, 25, 24, // array for numUps()

 100, 110, 120, 130, 140}; // epilogue

 printf("Number of ups: %d\n", numUps(&List[5], 10));

 return 0;

}

/** Returns the number of elements in A[] that are larger than the preceding

 * element in A[].

 *

 * Pre:

 * A[0:Sz-1] are initialized

 * Post:

 * A is unchanged

 */

int numUps(int A[], int Sz) {

 int ups = 0;

 for (int idx = 0; idx < Sz; idx++) {

 if (A[idx] < A[idx + 1])

 ups++;

 }

 return ups;

}

a) [10 points] When she compiled the code, there were no warning or error messages. When she executed the test she

has written above, she expected a return value of 6, but the function numUps() returned the value 7. Explain exactly

how to fix the logic error in the implementation of numUps().

The error is that the loop accesses an out-of-bounds element on the last pass.

The simple fix is to change the loop test to: idx < Sz – 1.

b) [6 points] Explain what she did in designing her test that led to discovering the error.

She embedded the test array within a "buffer" that included values chosen to alter the

function's behavior IF it accessed data outside the array; going beyond the array bounds in

either direction would cause the function to count additional "ups".

CS 2505 Computer Organization I Test 1

A 6

4. [16 points] Write an implementation of a C function satisfies the given header comments:

/** Replaces even values in an array with odd values.

 * Pre:

 * pA[0:Sz-1] are initialized

 * pChanges points to a variable of type int

 *

 * Post:

 * If an even value K occurs in the array, K has been replaced by

 * 2K + 1.

 * *pChanges equals the number of even values that were changed

 *

 * Restrictions:

 *

 * You must not use array bracket notation in your solution; you must

 * use pointer notation for all accesses to the array.

 */

void oddBall(int* pA, int Sz, int* const pChanges) {

 *pChanges = 0; // *pChanges wasn't guaranteed to be preset to 0

 for (int idx = 0; idx < Sz; idx++) { // std array traversal logic

 if (*pA % 2 == 0) { // see if current element is even

 *pA = 2 * (*pA) + 1; // reset current element, if even

 *pChanges = *pChanges + 1; // count changes

 }

 pA++; // step to next element of array

 }

}

Here's a somewhat better solution:

void oddBall(int* pA, int Sz, int* const pChanges) {

 int numChanges = 0; // count changes w/o a pointer dereference

 int* pCurr = pA; // points to current element of array

 int* pEnd = pA + Sz; // points to memory location just after end of array

 while (pCurr < pEnd) { // stop when step past end of array

 int currElement = *pCurr; // copy current element from array;

 // void extra memory accesses

 if (currElement % 2 == 0) { // see if current element is even

 *pCurr = 2 * currElement + 1; // reset even element

 numChanges++; // count changes

 }

 pCurr++; // step to next element

 }

 *pChanges = numChanges; // set number of changes once, at end

}

CS 2505 Computer Organization I Test 1

A 7

5. Suppose that we have the following variable declarations:

uint64_t X = 0x0011223344556677;

uint8_t* q = (uint8_t*) &X;

Then we have the following memory situation (numeric values are all given in hexadecimal):

Address byte

EC9BD6E8: 77 <--- q points to THIS byte

EC9BD6E9: 66

EC9BD6EA: 55

EC9BD6EB: 44

EC9BD6EC: 33

EC9BD6ED: 22

EC9BD6EE: 11

EC9BD6EF: 00

a) [6 points] Why does q point to that particular byte of X? Be very specific.

Because multibyte integers are stored with the least-significant byte at the lowest address

(i.e., in little-endian order).

The fact that the pointer has a one-byte target is irrelevant; any pointer initialized to &X

would store the address of the same byte.

b) [15 points] What value (expressed in human-friendly, big-endian hexadecimal) would each of the following

statements assign to the variable on the left side of the assignment operation? No justification is needed.

uint16_t v1 = *(uint16_t*) q;

0x6677

uint32_t v2 = *(uint16_t*) q;

0x00006677 (The leading zeros are unnecessary, but this IS a 32-bit value.)

uint32_t v3 = *(uint32_t*) q;

0x44556677

uint16_t v4 = *(uint16_t*) (q + 4);

0x2233

uint16_t v5 = *(uint16_t*) q + 4;

0x6677 + 4 = 0x667B

CS 2505 Computer Organization I Test 1

A 8

6. A programmer is testing an implementation of a function that's supposed to conform to the description in the header

comment below:

/** Returns the square of A % B. For example F(23 % 10) == 9.

 */

int F(int A, int B);

The programmer writes some simple test code to call the function and print the results; he gets the following output:

The square of 7834 mod 47 is 45

Now, this is puzzling, since it's clear that the result is not even a perfect square. A little arithmetic reveals that 7834 % 47

is actually 32. So, the programmer uses gdb to analyze the implementation:

CentOS> gcc -o Q6 -std=c99 -Wall -ggdb3 Q6.c

CentOS> gdb Q6

. . .

(gdb) break main

Breakpoint 1 at 0x400538: file Q6.c, line 8.

(gdb) break F

Breakpoint 2 at 0x400583: file Q6.c, line 20.

(gdb) run

Starting program: /home/wdm/2505/Midterm/Q6/Q6

Breakpoint 1, main () at Q6.c:8

8 int N = 7834;

(gdb) next

9 int D = 47;

(gdb) next

. . .

(gdb) print N

$1 = 7834

(gdb) print D

$2 = 47

(gdb) continue

Continuing.

Breakpoint 2, F (A=47, B=7834) at Q6.c:20

20 int R = A % B;

(gdb)

a) [5 points] The gdb session above tells the programmer there is a specific error in the code he has written. What is

that error?

The line that begins "Breakpoint 2" shows that the parameters were passed to the function in

reverse order (a fairly common programming error, and one the compiler cannot detect since

both parameters are of the same type).

It's true that the computation shown in the initialization of R is incorrect, but that is entirely

due to the fact that the parameters are reversed.

CS 2505 Computer Organization I Test 1

A 9

The programmer fixes the rather embarrassing error mentioned above, recompiles the code and executes it again; this time

he gets:

The square of 7834 mod 47 is 34

Well, that is still wrong... 34 isn't a perfect square either. So, he resorts to gdb again:

. . .

Breakpoint 2, F (A=7834, B=47) at Q6.c:20

20 int R = A % B;

(gdb) next

22 R = R ^ 2;

(gdb) print R

$3 = 32

(gdb) next

24 return R;

(gdb) print R

$4 = 34

b) [6 points] The gdb session above tells the programmer there is another specific error in the code he has written.

Precisely what is that error?

There are two things to notice. The less obvious one is that he has used '^' to square R; but,

of course, it really means XOR in C. The more obvious thing is that the value of R2 is clearly

incorrect.

The essential point was that the XOR operator was used.

c) [4 points] Given that he now understands the second error, and he understands data representation and simple bitwise

operations, the programmer also now understands why the function produced the value 34 when he ran it (the second

time).

Explain exactly why the value of R changed from 32 to 34 near the end of the execution of the function F().

R was set to 32 when A % B was evaluated.

R will be represented in 2's complement form as 0...0010 0000.

Then R ^ 2 will be 0...0010 0000 ^ 0...0000 0010.

Since 0 XOR 0 == 0 and 0 XOR 1 == 1, R ^ 2 == 0...0010 0010 or 34.

A complete explanation needed to explain exactly what's going on at the bit level.

