
Shell Configuration

Computer Organization I

1

CS@VT ©2005-2014 McQuain

Environment Variables

A shell is simply a program that supplies certain services to users.

As such, a shell may take parameters whose values modify or define certain behaviors.

These parameters (or shell variables or global environment variables) typically have values

that are set in certain configuration files.

When you install Linux, or use your rlogin account, many of these parameters will have

default values determined by the system administrator or by Linux installer.

You may generally modify those default values and even define new parameters by editing

configuration files within your home directory.

Open a bash shell and enter the command $HOME… this will show the current value of

the environment variable HOME.

Shell Configuration

Computer Organization I

2

CS@VT ©2005-2014 McQuain

The Path Variable

The environment variable that is most often encountered is the PATH variable, which

determines which directories the shell will search (and in what order) when the shell

attempts to locate programs you are attempting to execute.

We see that the default PATH for this Ubuntu installation contains the directories:

/usr/local/sbin
/usr/local/bin
/usr/sbin
/usr/bin
/sbin
/bin
/usr/games (which apparently does not exist!)

Shell Configuration

Computer Organization I

3

CS@VT ©2005-2014 McQuain

Setting a Variable

You can change the value of a shell variable from the command line.

Let’s add the current directory to the PATH:

Note that we can now run the user program sleeper2 without specifying the path.

But… this only resets PATH for the current shell session.

Shell Configuration

Computer Organization I

4

CS@VT ©2005-2014 McQuain

Bash Shell Startup

When a bash shell is started, it automatically executes commands stored in certain files.

There are three kinds of shells:

(interactive) login shells (sets values for various shell variables)

/etc/profile a system file that only the root user can modify

~/.bash_profile files in your HOME directory that you can change

~/.bash_login
~/.profile

interactive non-login shells (inherits login shell variables from files above)

/etc/bashrc another system file

~/.bashrc another file in your HOME directory

non-interactive shells (inherits login shell variables from files above)

files named by the environment variable BASH_ENV

Shell Configuration

Computer Organization I

5

CS@VT ©2005-2014 McQuain

Side Note: Hidden Files

If you try the ls command in your home directory, you will (probably) notice that the file

.bash_profile is not listed.

Filenames that begin with a period are hidden by default.

You can use the ls -a command will show hidden files as well as non-hidden files.

Shell Configuration

Computer Organization I

6

CS@VT ©2005-2014 McQuain

Common Variance

When you open an interactive terminal session in Linux, the sequence described on the

preceding slide is probably NOT followed by default.

In particular, ~/.bash_profile is not executed automatically, and therefore changes you

make to it will not be effective.

There is a simple fix for the issue:

- open a terminal session and go to Edit/Profile Preferences

- select the Title and Command tab

- check the box for “Run command as a login shell”

In fact, in my rlogin installation, ~/.bash_profile did not exist initially; I had to create it

with a text editor.

Shell Configuration

Computer Organization I

7

CS@VT ©2005-2014 McQuain

~/.bash_profile

You should use ~/.bash_profile to set changes to the PATH variable because

~/.bash_profile is only executed once.

Here is a sample .bash_profile taken from Sobell:

if [-f ~/.bashrc]; then # if .bashrc exists in the home directory
source ~/.bashrc # run it

fi

PATH=$PATH:. # add working directory to the path

export PS1='[\h \W \!]\$ ' # configure the shell prompt

Normally, ~/.bashrc is invoked from another configuration file, as shown here.

See the note in Sobell regarding adding the working directory to the path; NEVER add it at

the beginning of the path!

Sobell has a good discussion of the various options for the appearance of the prompt.

Shell Configuration

Computer Organization I

8

CS@VT ©2005-2014 McQuain

~/.bashrc

Here is a sample ~/.bashrc adapted from Sobell:

if [-f /etc/bashrc]; then # if global bashrc exists , run it
source /etc/bashrc # note: no period in file name

fi
if [-d "$HOME/bin"] ; then # add user’s bin directory to path

PATH="$HOME/bin:$PATH"
fi
set -o noclobber # prevent silent overwriting of files

(by redirection)
unset MAILCHECK # disable “you have mail” notice

alias rm=‘rm -i’ # always use interactive rm cmd
alias cp=‘cp -i’ # and interactive cp cmd
alias h=‘history | tail’
alias ll=‘ls -alF’

alias commands are a convenient way to create mnemonics for specialized execution of

system commands.

Shell Configuration

Computer Organization I

9

CS@VT ©2005-2014 McQuain

Installing a Simple Shell Function

You can define functions (think shell scripting) and run them from your shell.

For example, I might add the following to my .bashrc file:

. . .
User specific functions
numUsers() {

whoson=`who -q` # save output from invoking who with -q
echo ${whoson##*=} # parse to isolate part we want and write it

}
. . .

Then, I can run this function, as a command, from my shell prompt:

wdm@VMCentos64:~> who -q

wdm wdm

users=2

wdm@VMCentos64:~> numUsers

2

Shell Configuration

Computer Organization I

10

CS@VT ©2005-2014 McQuain

Fun with the Prompt

If I modify my prompt definition (in .bash_profile):

. . .
PS1='Cmd \! `numUsers` \W> '
. . .

My prompt now includes the output (note the backticks above) from the function:

Cmd 1000 14 ~>

Shell Configuration

Computer Organization I

11

CS@VT ©2005-2014 McQuain

Shell Functions

I can easily turn a shell script into a shell function. Consider the backup script discussed

earlier.

#!/bin/bash

This script makes a backup of a directory to another server.

Invocation: ./backup3.sh DIRNAME

backup support fns

show_usage() {

echo "Invocation: ./backup3.sh DIRNAME"

}

. . .

body of script

if [[$# -ne 1]]; then # check for a parameter

show_usage

exit 1

fi

. . .

Create a timestamp in the logfile to record the backup operation.

log_backup $BACKUPDIR $LOGFILE

exit 0 # return 0 on success

Shell Configuration

Computer Organization I

12

CS@VT ©2005-2014 McQuain

Shell Functions

Modify the script body to make it a function and embed into .bashrc:

. . .

backup support fns

show_usage() {

echo "Invocation: backup DIRNAME"

}

. . .

body of script

backup() {

if [[$# -ne 1]]; then # check for a parameter

show_usage

exit 1

fi

. . .

Create a timestamp in the logfile to record the backup operation.

log_backup $BACKUPDIR $LOGFILE

exit 0 # return 0 on success

}

. . .

I can now invoke this directly from the command-line (no path information is needed).

