Positional Notation

A *positional* or *place-value* notation is a numeral system in which each position is related to the next by a constant multiplier, called the *base* or *radix* of that numeral system.

The value of each digit position is the value of its digit, multiplied by a power of the base; the power is determined by the digit's position.

The value of a positional number is the total of the values of its positions.

So, in positional base-10 notation:

 $73901 = 7 \times 10^4 + 3 \times 10^3 + 9 \times 10^2 + 0 \times 10^1 + 1 \times 10^0$

And, in positional base-2 notation:

 $1001000010101101 = 1 \times 2^{16} + 1 \times 2^{13} + 1 \times 2^{7} + 1 \times 2^{5} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{0}$

Why is the second example a cheat?

CS@VT

Vital Point

Do not confuse the representation with the number!

Each of the following examples is a representation of the same number:

255 ₁₀		11111111 ₂		
	FF_{16}		2010 ₅	
377 ₈		33334		100110,

Do not make the mistake of thinking that there is such a thing as "a base-10 number" or "a base-16 number".

There is a base-10 <u>representation</u> of every number and there is a base-16 <u>representation</u> of every number.

Given a base-10 representation of an integer value, the base-2 representation can be calculated by successive divisions by 2:

Converting from base-2 to base-10

Given a base-2 representation of an integer value, the base-10 representation can be calculated by simply expanding the positional representation:

 $10010000010101101_{2} = 1 \times 2^{16} + 1 \times 2^{13} + 1 \times 2^{7} + 1 \times 2^{5} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{0}$

= 65536 + 8192 + 127 + 32 + 8 + 4 + 1

= 73901

Other Bases

Are analagous... given a base-10 representation of an integer value, the base-16 representation can be calculated by successive divisions by 16:

	inder	73901
l	3> D	4618
	0> A	288
$> 120 AD_{16}$	0	18
	2	1
	1	0

The choice of base determines the set of numerals that will be used.

```
base-16 (hexadecimal or simply hex)
```

```
numerals: 0 1 ... 9 A B C D E F
```

Converting from base-2 to base-16

Given a base-2 representation of an integer value, the base-16 representation can be calculated by simply converting the nybbles:

1 0010 0000 1010 1101 1 2 0 A D : hex

The same basic "trick" works whenever the target base is a power of the source base:

10 010 000 010 101 101 2 2 0 2 5 5 : octal

Computer Organization I

Important Bases in Computing

base-2	binary	0 1
base-8	octal	0 1 2 3 4 5 6 7
base-10	decimal	0 1 2 3 4 5 6 7 8 9
base-16	hex	0 1 2 3 4 5 6 7 8 9 A B C D E F