unwiovauna =
 Are You Smart Enough to Work at
 G-gle?

Irick Weastienk Cen-like Ridides, insoriely
Difficuly Parylet, ane Otter- Dewioun
Internowing Tecthn ulea You Nopal fa Kngn
te 《si a dob in the New Lsgmerty

WTLLIAM POUNDSTONE

"Hell, there are no rules here. We're trying to accomplish something."

Thomas Edison
"The bubble sort would be the wrong way to go."

Barack Obama

"We do go out of our way to recruit people who are a little different."

Larry Page

Googlers: People Ops
Chances:
$>$ Google hires about 1 out of every 130 people who apply for a position. (Not good odds.)
$>$ Great employees == great company

Desired Personality
> At what age did you start using a computer?
> Earlier the better
$>$ Did you ever build a computer?
> Yes, (see: Computer Power User)
> Belief in open, collaborative work
$>$! (Lone wolf programmers)
> Extroverted engineers

Candidate survey:
$>$ Indicate your working style on a scale of 1..5, where 1 = work alone and $5=$ part of a team
> 2,3 = Lone wolfs \& 3,4 = collaborators
$>$ Have you ever been in a coding contest?
$>$ Most successful google employees have not.

Package
> 40-50 page dossier on each google applicant
> Contents: biography, SAT, HS \& college grades, resume, work samples, reference reports, web info: Linkedln, blogs, postings, Facebook, Tweets, YouTube....

Common majority traits:
> GPA: 3.7 (3.0 for nontechnical jobs)
$>$ School: Stanford, Caltech, MIT, Ivy league
> Triple 800s on SATs, or a PhD.

Weightings
$>$ Equal weightings, (GPA same as others).
$>$ Sex: ratio of men \& women almost 50%
$>$ Looking for people who have overcome adversity.
> First family college grad
> Worked through college
$>$ Ivy league used for prior vetting

Applicants have 5 interviews:
$>$ Interviews performed by peers, NOT people Ops/HR
> Disparate interviewers
> Personality, gender, age, ethnicity, background
$>$ Performed by 5 different interviewers in 1 day
$>$ One is a relaxed lunch interview

You and the Interviewer
> Social networking data
> Assume employer will check: set pages to private or clean them up
> Ask who your interviewers will be?
>Google them

Work sampling
> Engineer: code an app, public relations: write press release, lawyer: write a contract (sell a person's soul to the devil)
Interview Grading
> Scale 1..4:

1. Don't hire, 2. Negative, but maybe,
2. Positive, but maybe not, 4. Definitely hire
$>$ Interview reports go into applicant's package
> Applicant's receiving only one 4 score perform better than applicant receiving all 3's.

All hires signed off by Larry Page.

Interview questions
$>$ Ok to question the interviewer
$>$ First define and clarify the question
> Assumptions should be checked
$>$ Decompose and describe your strategy for each part
> Always verbalize your thinking. Interviewers are interested in your thought processes. Silence is uncomfortable.
$>$ Listen to the interviewer. They may give a hint, but don't expect them to collaborate.
$>$ Expect the interviewer to be poker faced and be ready if they call time on a question.

Classification
$>$ Logic Puzzles: analytical reasoning
$>$ Insight Questions: leap of intuition
$>$ Lateral Thinking Puzzles: verbal ambiguity
$>$ Divergent Thinking: creativity
$>$ Fermi Questions: back of the envelope estimations
> Algorithms: efficiency

Fermi:
> How much would you charge to wash all the windows in Seattle?
$>$ How many phones are on the Va Tech campus?

Lateral Thinking:
$>$ A man pushed his car to a hotel and lost his entire fortune?
> There are three women in bathing suits. The happy woman is crying and the other two are sad. Why?

Logic:
$>$ You get on a ski lift at the bottom of a mountain \& ride it to the top. How many chairs do you pass?
$>$ In a dark room you're handed a deck of cards with N cards faceup and the rest facedown. You can't see the cards. How would you split the cards into 2 piles, with the same number of faceup cards in each pile?

Divergent Thinking:
$>$ Explain a database to an 8 year old in 3 sentences or less.
$>$ It is difficult to remember what you read, especially after many years. How would you address this problem?

Sample Questions

Insight:

> You have a chessboard with the opposite diagonal squares removed. Can you cover the remaining 62 squares with 31 dominos?

Algorithm
> What's the fastest way to sort a million 32 bit integers?

