You have 3 jars, of sizes 11 quarts, 9 quarts, and 4 quarts. You would like to use these jars to collect 6 quarts of water in one jar. How?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>9</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>127</td>
<td>98</td>
</tr>
<tr>
<td>15</td>
<td>90</td>
<td>4</td>
<td>67</td>
</tr>
<tr>
<td>14</td>
<td>163</td>
<td>25</td>
<td>99</td>
</tr>
<tr>
<td>18</td>
<td>43</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>43</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>20</td>
<td>59</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>28</td>
<td>76</td>
<td>3</td>
<td>25</td>
</tr>
</tbody>
</table>
Don't Be Blind

For most problems, people use a relevant strategy from habit. There’s an excellent reason for this: It usually works!!

Sometimes, the habit strategy is a bad match for the problem.

In this case, people can act like they are “blind” to the solution.

Example: Water jar problem.
“Einstellung” is the state of being “blind” or “tuned-in” to something.

“Functional Fixedness”: People often fail to see alternate uses to an object once they assign it a role.

People are fairly predictable in their susceptibility to functional blindness.

Awareness of the problem helps to avoid it.

This is real issue for students and in “real life”
  Example: Debugging, algorithm design
“Vertical thinking” is sticking with the current approach, being rigid.

“Lateral thinking” is coming at a problem from a different (perhaps nonstandard) direction.

Often, just realizing that this should be done is enough to find a good solution (getting out of the old approach).

Of course, it can be hard to tell when you are in the trap! It helps to have a “flexible” mindset.
Examples of Lateral Thinking

Unsticking a car lock on a cold night
  – Approach 1: Heat the key
  – Approach 2: Unfreeze the lock (with alcohol)

Need to iron a shirt, but no iron
  – Iron with something else (a frying pan)

Sheep in front of the truck
  – Approach 1: Beep horn, try to push or scare sheep
  – Approach 2: Lead the sheep behind the truck
How to Facilitate Flexibility?

Brainstorming
- Generate ideas
- Usually done in groups
- Don’t judge – respect crude ideas
- Quantity is important

Brainstorming is a skill that can be developed
- Skills are developed by practice

"Imagination is more important than knowledge."
- Albert Einstein (1879-1955)

Einstein Thought Experiments:  
www.pbs.org/wgbh/nova/physics/einstein-thought-experiments.html
In-the-small

There is an answer, the problem is to find it.

In-the-large

Many possible solutions.
More complex problems -> more alternative solutions.
The goal is to pick the best solution.
Problem Definition

Defining the Problem

The first step is to define the “right problem”.

Often the hardest/most important step

The “real problem” is often disguised.

Symptoms vs. root problem

Example 1:

Store had a rain forest health food mix.
It didn’t sell.
Perceived problem: overpriced.
Real problem: badly displayed.
Flow meters in a chemical plant were being corroded and would leak.

Perceived problem: “Find materials to make meter from that will not corrode”.

After much effort, no such materials were found.

Real problem: “Keep the flow meter from leaking”.

Solution: Regularly replace (cheap) flow meters.
Oil company had underperforming oil field.

Perceived problem: “Find ways to improve the oil recovery”.

After years of effort, still no improvement.

Eventually discovered that the estimates of oil in field were wrong.

Real problem: “Learn why the well was not producing well”.
A coal-to-gas process was generating tar-like substances in pipes.

Perceived problem: “Improve the solvents used to dissolve the coal to avoid the tar”.

No solvent was found that worked.

Real problem (generalize): “Determine why tar deposits are forming, and avoid them”.

Solution: Increase velocity in pipes gives coal and solvent less time to react and scours pipes clean.
Example: Irrigation Dam

Arid desert, but some plants grow.

Solution: Design and build a dam to divert river water for irrigation.

Very expensive dam was built.

Result: High salt concentrations were dissolved, killing both old and new plants.

How to avoid this outcome?
First Four Steps: Problem Definition

1. Collect and analyze information and data.
   - List every relevant thing you can think of.
   - Fill in missing gaps.
2. Talk with people familiar with the problem.
   - Look past the obvious.
   - Get clarifications when you don’t understand.
3. If at all possible, view the problem first hand.
4. Confirm all findings.