Linear Difference Equations of Order One

Given sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$, find a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ such that

$$
x_{n}=a_{n} x_{n-1}+b_{n}, \quad n=1,2, \ldots ; \quad x_{0}=c .
$$

For the homogeneous case $x_{n}=a_{n} x_{n-1}$, the solution is

$$
x_{n}=c \pi_{n},
$$

where $\pi_{0}=1, \pi_{n}=a_{1} a_{2} \cdots a_{n}$. The general (nonhomogeneous) solution is

$$
x_{n}=\pi_{n}\left(c+\frac{b_{1}}{\pi_{1}}+\frac{b_{2}}{\pi_{2}}+\cdots+\frac{b_{n}}{\pi_{n}}\right) .
$$

Linear Constant Coefficient Homogeneous Difference Equations of Order k

Given constants $a_{1}, \ldots, a_{k}, c_{0}, \ldots, c_{k-1}$, find a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ such that

$$
x_{n}=a_{1} x_{n-1}+a_{2} x_{n-2}+\cdots+a_{k} x_{n-k}, \quad n \geq k ; \quad x_{i}=c_{i}, i=0,1, \ldots, k-1 .
$$

For a sequence $X=\left\{x_{n}\right\}_{n=0}^{\infty}$, define the sequence $\mathcal{L}(X)=\left\{y_{n}\right\}_{n=k}^{\infty}$ by

$$
y_{n}=x_{n}-a_{1} x_{n-1}-a_{2} x_{n-2}-\cdots-a_{k} x_{n-k}
$$

and the associated characteristic polynomial

$$
P(\tau)=\tau^{k}-a_{1} \tau^{k-1}-a_{2} \tau^{k-2}-\cdots-a_{k-1} \tau-a_{k} .
$$

Then
(1) $\mathcal{L}(W)=\mathcal{L}(Z)=0 \Longrightarrow \mathcal{L}(\alpha W+\beta Z)=0$ for any constants α and β,
(2) for any root t of $P(\tau)=0$, the sequence X defined by $x_{n}=t^{n}$ solves $\mathcal{L}(X)=0$,
(3) if t is a root of multiplicity $r>1$ of $P(\tau)=0$, then $x_{n}=n(n-1) \cdots(n-s+1) t^{n-s}$ solves $\mathcal{L}(X)=0$ for $0 \leq s \leq r-1$.
Each simple root t of $P(\tau)=0$ defines a sequence by $x_{n}=t^{n}$, and each multiple root t defines multiple sequences according to (3). There are thus exactly k distinct (and independent) sequences $X^{(i)}, 1 \leq i \leq k$, each solving $\mathcal{L}(X)=0$. By (1), $\mathcal{L}\left(\sum_{i=1}^{k} \alpha_{i} X^{(i)}\right)=0$, and solving the linear system of equations

$$
\begin{gathered}
\sum_{i=1}^{k} \alpha_{i} X_{0}^{(i)}=c_{0} \\
\vdots \\
\sum_{i=1}^{k} \alpha_{i} X_{k-1}^{(i)}=c_{k-1}
\end{gathered}
$$

for the coefficients α_{i} gives the unique solution

$$
\sum_{i=1}^{k} \alpha_{i} X^{(i)}
$$

to $\mathcal{L}(X)=0$ satisfying the initial conditions $x_{i}=c_{i}, i=0,1, \ldots, k-1$.

Example. The Fibonacci sequence is defined by

$$
x_{n}=x_{n-1}+x_{n-2}, \quad x_{0}=x_{1}=1 .
$$

The linear operator $\mathcal{L}(X)_{n}=x_{n}-x_{n-1}-x_{n-2}$ and the roots of the characteristic polynomial $P(\tau)=\tau^{2}-\tau-1$ are $\frac{1 \pm \sqrt{5}}{2}$, and thus two solutions of $\mathcal{L}(X)=0$ are

$$
X_{n}^{(1)}=\left(\frac{1+\sqrt{5}}{2}\right)^{n}, \quad X_{n}^{(2)}=\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

The linear system of equations to satisfy the initial conditions is

$$
\begin{array}{r}
\alpha_{1} X_{0}^{(1)}+\alpha_{2} X_{0}^{(2)}=\alpha_{1}+\alpha_{2}=1, \\
\alpha_{1} X_{1}^{(1)}+\alpha_{2} X_{1}^{(2)}=\alpha_{1}\left(\frac{1+\sqrt{5}}{2}\right)+\alpha_{2}\left(\frac{1-\sqrt{5}}{2}\right)=1,
\end{array}
$$

whose solution is $\alpha_{1}=\frac{1+\sqrt{5}}{2 \sqrt{5}}, \alpha_{2}=-\frac{1-\sqrt{5}}{2 \sqrt{5}}$. The Fibonacci numbers are therefore given by

$$
x_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right)
$$

Special Numbers

Euler's constant $\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\ln n\right)=0.57721566490153286060 \ldots$
Euler's gamma function $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$, where $\Re z>0 . \Gamma(1)=1, \Gamma(n+1)=n$! for nonnegative integers n, and in general $\Gamma(z+1)=z \Gamma(z)$.
${ }_{n} P_{r}=\frac{n!}{(n-r)!}$ is the number of permutations of n objects taken r at a time.
The binomial coefficient $\binom{n}{r}=\frac{n!}{r!(n-r)!}$, defined for integers $n \geq r \geq 0$, is the number of combinations of n objects taken r at a time. More generally,

$$
\binom{n}{r}= \begin{cases}\frac{n(n-1) \cdots(n-r+1)}{r!}, & \text { integer } r \geq 0 \\ 0, & \text { integer } r<0\end{cases}
$$

is defined for real or complex n and integer r, and satisfies the Pascal triangle recurrence

$$
\binom{n+1}{r+1}=\binom{n}{r}+\binom{n}{r+1} .
$$

By convention, $\binom{n}{0}=1$.
The Stirling number of the second kind $\left\{\begin{array}{l}n \\ r\end{array}\right\}$ is the number of partitions of a set of n objects into r nonempty subsets. By convention, $\left\{\begin{array}{l}n \\ n\end{array}\right\}=1$ for integer $n \geq 0$, and $\left\{\begin{array}{l}n \\ r\end{array}\right\}=0$ for integers $n>0$, $r \leq 0$. The recurrence relation is

$$
\left\{\begin{array}{c}
n+1 \\
r
\end{array}\right\}=r\left\{\begin{array}{l}
n \\
r
\end{array}\right\}+\left\{\begin{array}{c}
n \\
r-1
\end{array}\right\} .
$$

The Stirling number of the first kind $\left[\begin{array}{l}n \\ r\end{array}\right]$ is the number of wreath arrangements of a set of n objects into r nonempty wreaths (or, equivalently, the number of permutations of a set of n objects that can be written as the product of r cycles). For integers $n \geq 0$ and r, some identities are

$$
\begin{gathered}
{\left[\begin{array}{l}
n \\
n
\end{array}\right]=\left\{\begin{array}{l}
n \\
n
\end{array}\right\}=1, \quad\left[\begin{array}{c}
n \\
n-1
\end{array}\right]=\left\{\begin{array}{c}
n \\
n-1
\end{array}\right\}=\binom{n}{2}, \quad\left[\begin{array}{c}
n+1 \\
1
\end{array}\right]=n!, \quad \sum_{r=0}^{n}\left[\begin{array}{l}
n \\
r
\end{array}\right]=n!,} \\
{\left[\begin{array}{c}
n+1 \\
r
\end{array}\right]=n\left[\begin{array}{l}
n \\
r
\end{array}\right]+\left[\begin{array}{c}
n \\
r-1
\end{array}\right]}
\end{gathered}
$$

Difference Calculus

Difference calculus is the discrete analog of Newton's continuous calculus. For a function $f(x)$, some basic difference operators are
$\Delta f(x)=f(x+1)-f(x)$ (forward difference),
$\nabla f(x)=f(x)-f(x-1)$ (backward difference),
$\delta f(x)=f(x+1 / 2)-f(x-1 / 2)$ (central difference),
$\mu f(x)=(f(x+1 / 2)+f(x-1 / 2)) / 2$ (averaging operator).

$$
x^{\bar{k}}=x(x+1) \cdots(x+k-1), \quad x^{\underline{k}}=x(x-1) \cdots(x-k+1), \quad \Delta x^{\underline{k}}=k x \underline{k-1} .
$$

$x^{\bar{k}}$ is read as " x^{k} ascending" and x^{k} is read as " x^{k} descending". Using the fact that $\left\{\begin{array}{l}n \\ k\end{array}\right\}=\left[\begin{array}{l}n \\ k\end{array}\right]=0$ for integers $n \geq 0$ and $k<0$, relationships between x^{n}, x^{n}, and $x^{\bar{n}}$ for integer $n \geq 0$ are

$$
\begin{gathered}
x^{n}=\sum_{k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{\underline{k}}=\sum_{k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}(-1)^{n-k} x^{\bar{k}}, \\
x^{\bar{n}}=\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k}, \quad x^{\underline{n}}=\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right](-1)^{n-k} x^{k}, \quad x^{\underline{n}}=(-1)^{n}(-x)^{\bar{n}} .
\end{gathered}
$$

Fundamental Theorem of Difference Calculus. Let $a<b$ be integers, and f, F be functions such that $f(x)=\Delta F(x)$. Then

$$
\sum_{a \leq k<b} f(k)=F(b)-F(a)
$$

Example. Find a formula for $\sum_{k=0}^{n} k^{3}$. Take

$$
f(x)=x^{3}=x^{\underline{3}}+3 x^{\underline{2}}+x^{\underline{1}} \text { and } F(x)=\frac{x^{\underline{4}}}{4}+x^{\underline{3}}+\frac{x^{\underline{2}}}{2}
$$

for which $\Delta F(x)=f(x)$. Then by the fundamental theorem,

$$
\begin{aligned}
\sum_{k=0}^{n} k^{3}=\sum_{0 \leq k<n+1} f(k) & =F(n+1)-F(0) \\
& =\frac{(n+1) n(n-1)(n-2)}{4}+(n+1) n(n-1)+\frac{(n+1) n}{2} \\
& =\frac{n^{2}(n+1)^{2}}{4} .
\end{aligned}
$$

Probability and Statistics

A random variable is a function $X: A \rightarrow B$ defined on a set A of outcomes. e.g., $A=\{$ heads, tails $\}, B=\{0,1\}, X$ (heads) $=1, X($ tails $)=0$. Subsets of A are called events. Associated with an event $R \subset A$ is a real number $P(R), 0 \leq P(R) \leq 1$, called the probability of R, which measures the likelihood of any outcome in R occurring. A probability measure P satisfies
(1) $P(\emptyset)=0$,
(2) $P(A)=1$,
(3) $P(R \cup S)=P(R)+P(S)$ for any two disjoint $(R \cap S=\emptyset)$ subsets R, S of A.

Example. $A=\{5$-card poker hands $\}, R=\{$ hands containing a king $\}, S=\{$ hands with no face cards $\}$. Then $R \cap S=\emptyset$, and $P(R \cup S)=P(R)+P(S)$.

The events R and S are independent if $P(R \cap S)=P(R) P(S)$.
For a discrete random variable X (the set B is a discrete set, e.g., $B=\{0,1,2,3, \ldots\}$), the probability that $X=x$ is

$$
P(X=x)=P(\{\theta \mid X(\theta)=x\})=p_{X}(x) .
$$

The function p_{X} is called the probability mass function (pmf) of X.
Example. Let $P(\{$ head $\})=p, A=\{$ sequences of n coin flip outcomes $\}, B=\{0,1, \ldots, n\}, \theta \in A$, $X(\theta)=$ number of heads in θ. Then

$$
P(X=r)=\binom{n}{r} p^{r}(1-p)^{n-r}
$$

X is said to have a binomial distribution.
$X: A \rightarrow B$ is a continuous random variable if A and B are not discrete sets, e.g., $A=B=$ $\mathbf{R}=\{$ real numbers $\}$. In this case probabilities are given by integrals:

$$
P(a \leq X \leq b)=P(\{\theta \mid a \leq X(\theta) \leq b\})=\int_{a}^{b} f(s) d s
$$

where $f(s) \geq 0$ is called the probability density function (pdf) for X. The function

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(s) d s
$$

is called the cumulative distribution function (cdf) for X; note that $F^{\prime}(x)=f(x)$.
Some standard continuous probability distributions with their notation and density function are listed below.

Distribution	Notation	pdf $f(x)$	Parameters
uniform	$U(a, b)$	$\frac{1}{b-a}$	$a \leq x \leq b$
normal	$N\left(\mu, \sigma^{2}\right)$	$\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$	$-\infty<x<\infty, \sigma>0$

gamma	$G A M(\lambda, \alpha)$	$\frac{\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)}$	$x>0, \alpha, \lambda>0$
r-stage Erlang	$G A M(\lambda, r)$		$r=1,2,3, \ldots$
exponential	$E X P(\lambda)$	$\lambda e^{-\lambda x}$	$x>0, \lambda>0$
hypoexponential	$H Y P O\left(\lambda_{1}, \ldots, \lambda_{n}\right)$	$\sum_{i=1}^{n} a_{i} \lambda_{i} e^{-\lambda_{i} x}$	$x>0, \lambda_{i}>0 \forall i$
beta	$B E T A(\alpha, \beta)$	$\frac{a_{i}=\prod_{\substack{j=1 \\ j \neq i}}^{n} \frac{\lambda_{j}}{\lambda_{j}-\lambda_{i}}}{\Gamma(\alpha+\beta)} x_{i} \neq \lambda_{j}$ for $i \neq j$	
		$x^{\alpha-1}(1-x)^{\beta-1}$	$0 \leq x \leq 1, \alpha, \beta>0$

Define a binary random variable $Y_{i}($ success $)=1, Y_{i}$ (failure) $=0$ for trial i. If the Y_{i} are independent and $P\left(Y_{i}=1\right)=p \forall i$, then the $Y_{i} /$ trials are called Bernoulli random variables/trials. Each trial may have c different outcomes, with probabilities p_{1}, \ldots, p_{c}. Some common discrete probability distributions follow.

Distribution	$\operatorname{pmf} p_{X}(r)$	Parameters
binomial	$\binom{n}{r} p^{r}(1-p)^{n-r}$	r successes in n trials
multinomial	$\frac{n!}{r_{1}!r_{2}!\cdots r_{c}!} \prod_{i=1}^{c} p_{i}^{r_{i}}$	$r=\left(r_{1}, r_{2}, \ldots, r_{c}\right)$ outcomes in $n=\sum_{i=1}^{c} r_{i}$ trials
geometric	$(1-p)^{r-1} p$	r trials up to and including first success
Poisson	$\frac{e^{-\mu} \mu^{r}}{r!}$	$\mu>0, r=0,1,2, \ldots$

The expected value (or mean) $E[X]$ of a discrete random variable X with $\operatorname{pmf} p_{X}(x)$ is defined by

$$
E[X]=\sum_{x \in B} x p_{X}(x),
$$

and for a continuous random variable X with $\operatorname{pdf} f(s)$ by

$$
E[X]=\int_{-\infty}^{\infty} s f(s) d s
$$

In general, the expected value of any function $g(X)$ of a random variable X is

$$
E[g(X)]=\sum_{x \in B} g(x) p_{X}(x) \text { or } E[g(X)]=\int_{-\infty}^{\infty} g(s) f(s) d s
$$

The variance of X is $\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]$. The mean and variance are often denoted by μ and σ^{2}, respectively. σ is called the standard deviation.
Theorem. For any two random variables X and $Y, E[X+Y]=E[X]+E[Y]$.

Theorem. If X and Y are independent random variables, then

$$
E[X Y]=E[X] E[Y] \quad \text { and } \quad \operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y] .
$$

Example. For a Bernoulli variable $Y_{i}, E\left[Y_{i}\right]=1 \cdot p+0 \cdot(1-p)=p, \operatorname{Var}\left[Y_{i}\right]=E\left[\left(Y_{i}-p\right)^{2}\right]=$ $E\left[Y_{i}^{2}\right]-\left(E\left[Y_{i}\right]\right)^{2}=p-p^{2}=p(1-p)$.
Example. For an n-trial binomial variable $X=Y_{1}+\cdots+Y_{n}, E[X]=E\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} E\left[Y_{i}\right]=n p$ and $\operatorname{Var}[X]=\operatorname{Var}\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[Y_{i}\right]=n p(1-p)$.
Example. X with a geometric distribution has $E[X]=1 / p$ and $\operatorname{Var}[X]=(1-p) / p^{2}$.
Example. For a Poisson variable X with parameter $\mu, E[X]=\operatorname{Var}[X]=\mu$.
Example. A uniform distribution X over $a \leq x \leq b$ has $E[X]=(a+b) / 2$ and $\operatorname{Var}[X]=$ $(b-a)^{2} / 12$.
Example. An $N\left(\mu, \sigma^{2}\right)$ normal random variable has mean μ and variance σ^{2}.
Example. A $G A M(\lambda, \alpha)$ random variable has mean α / λ and variance α / λ^{2}.
Markov Inequality. Let X be a nonnegative random variable with finite mean $E[X]=\mu$. Then for any $t>0$,

$$
P(X \geq t) \leq \frac{\mu}{t}
$$

Chebyshev Inequality. Let X be a random variable with finite mean μ and variance σ^{2}. Then for any $t>0$,

$$
P(|X-\mu| \geq t) \leq \frac{\sigma^{2}}{t^{2}}
$$

Consider a population described by a distribution (with mean μ and variance σ^{2}), where a value $X(\theta)=x$ of the random variable X corresponds to sampling one individual from the population. A sample x_{1}, \ldots, x_{n} from the population can be viewed as values of n independent identically distributed random variables X_{1}, \ldots, X_{n}. A statistic is a number derived from a sample or population, and the fundamental question is how sample statistics relate to population statistics.

The sample mean \bar{x} and sample variance $s^{2}=\bar{\sigma}^{2}$ are

$$
\bar{x}=\frac{x_{1}+\cdots+x_{n}}{n}, \quad s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} .
$$

These are called unbiased estimators, since $E[\bar{x}]=\mu$ and $E\left[s^{2}\right]=\sigma^{2}$. Observe that if s^{2} were defined with $1 / n$ instead of $1 /(n-1)$, then $E\left[s^{2}\right] \neq \sigma^{2}$. Applying Chebyshev's inequality gives

$$
P(|\bar{x}-\mu| \geq t) \leq \frac{\sigma^{2}}{n t^{2}}
$$

Let S be an event space (set of outcomes), let $A, B \subset S$ be events, and let the events B_{1}, B_{2}, $\ldots, B_{n} \subset S$ partition S, i.e., $S=\cup_{i=1}^{n} B_{i}$ and $B_{i} \cap B_{j}=\emptyset$ for $i \neq j$. The conditional probability of event B, given that event A has already occurred, is defined by

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}, \quad P(A)>0 .
$$

For $P(A)>0$, Bayes Theorem states that for each $k=1, \ldots, n$,

$$
P\left(B_{k} \mid A\right)=\frac{P\left(A \mid B_{k}\right) P\left(B_{k}\right)}{\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)}
$$

