Linear Difference Equations of Order One

Given sequences $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$, find a sequence $\{x_n\}_{n=0}^{\infty}$ such that

$$x_n = a_n x_{n-1} + b_n, \quad n = 1, 2, \dots; \qquad x_0 = c.$$

For the homogeneous case $x_n = a_n x_{n-1}$, the solution is

$$x_n = c\pi_n$$

where $\pi_0 = 1$, $\pi_n = a_1 a_2 \cdots a_n$. The general (nonhomogeneous) solution is

$$x_n = \pi_n \left(c + \frac{b_1}{\pi_1} + \frac{b_2}{\pi_2} + \dots + \frac{b_n}{\pi_n} \right).$$

Linear Constant Coefficient Homogeneous Difference Equations of Order k

Given constants $a_1, \ldots, a_k, c_0, \ldots, c_{k-1}$, find a sequence $\{x_n\}_{n=0}^{\infty}$ such that

$$x_n = a_1 x_{n-1} + a_2 x_{n-2} + \dots + a_k x_{n-k}, \quad n \ge k; \qquad x_i = c_i, \ i = 0, 1, \dots, k-1.$$

For a sequence $X = \{x_n\}_{n=0}^{\infty}$, define the sequence $\mathcal{L}(X) = \{y_n\}_{n=k}^{\infty}$ by

$$y_n = x_n - a_1 x_{n-1} - a_2 x_{n-2} - \dots - a_k x_{n-k}$$

and the associated characteristic polynomial

$$P(\tau) = \tau^k - a_1 \tau^{k-1} - a_2 \tau^{k-2} - \dots - a_{k-1} \tau - a_k.$$

Then

- (1) $\mathcal{L}(W) = \mathcal{L}(Z) = 0 \Longrightarrow \mathcal{L}(\alpha W + \beta Z) = 0$ for any constants α and β ,
- (2) for any root t of $P(\tau) = 0$, the sequence X defined by $x_n = t^n$ solves $\mathcal{L}(X) = 0$,
- (3) if t is a root of multiplicity r > 1 of $P(\tau) = 0$, then $x_n = n(n-1)\cdots(n-s+1)t^{n-s}$ solves $\mathcal{L}(X) = 0$ for $0 \le s \le r-1$.

Each simple root t of $P(\tau) = 0$ defines a sequence by $x_n = t^n$, and each multiple root t defines multiple sequences according to (3). There are thus exactly k distinct (and *independent*) sequences $X^{(i)}$, $1 \le i \le k$, each solving $\mathcal{L}(X) = 0$. By (1), $\mathcal{L}(\sum_{i=1}^k \alpha_i X^{(i)}) = 0$, and solving the linear system of equations

$$\sum_{i=1}^{k} \alpha_i X_0^{(i)} = c_0,$$

:

$$\sum_{i=1}^{k} \alpha_i X_{k-1}^{(i)} = c_{k-1},$$

for the coefficients α_i gives the unique solution

$$\sum_{i=1}^{k} \alpha_i X^{(i)}$$

to $\mathcal{L}(X) = 0$ satisfying the initial conditions $x_i = c_i, i = 0, 1, ..., k - 1$.

Example. The Fibonacci sequence is defined by

$$x_n = x_{n-1} + x_{n-2}, \quad x_0 = x_1 = 1.$$

The linear operator $\mathcal{L}(X)_n = x_n - x_{n-1} - x_{n-2}$ and the roots of the characteristic polynomial $P(\tau) = \tau^2 - \tau - 1$ are $\frac{1 \pm \sqrt{5}}{2}$, and thus two solutions of $\mathcal{L}(X) = 0$ are

$$X_n^{(1)} = \left(\frac{1+\sqrt{5}}{2}\right)^n, \qquad X_n^{(2)} = \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

The linear system of equations to satisfy the initial conditions is

$$\alpha_1 X_0^{(1)} + \alpha_2 X_0^{(2)} = \alpha_1 + \alpha_2 = 1,$$

$$\alpha_1 X_1^{(1)} + \alpha_2 X_1^{(2)} = \alpha_1 \left(\frac{1 + \sqrt{5}}{2} \right) + \alpha_2 \left(\frac{1 - \sqrt{5}}{2} \right) = 1,$$

whose solution is $\alpha_1 = \frac{1+\sqrt{5}}{2\sqrt{5}}$, $\alpha_2 = -\frac{1-\sqrt{5}}{2\sqrt{5}}$. The Fibonacci numbers are therefore given by

$$x_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right).$$

Special Numbers

Euler's constant
$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \right) = 0.57721566490153286060\dots$$

Euler's gamma function $\Gamma(z)=\int_0^\infty t^{z-1}e^{-t}\,dt$, where $\Re z>0$. $\Gamma(1)=1$, $\Gamma(n+1)=n!$ for nonnegative integers n, and in general $\Gamma(z+1)=z\Gamma(z)$.

 $_{n}P_{r} = \frac{n!}{(n-r)!}$ is the number of permutations of n objects taken r at a time.

The binomial coefficient $\binom{n}{r} = \frac{n!}{r!(n-r)!}$, defined for integers $n \geq r \geq 0$, is the number of combinations of n objects taken r at a time. More generally,

$$\binom{n}{r} = \begin{cases} \frac{n(n-1)\cdots(n-r+1)}{r!}, & \text{integer } r \ge 0, \\ 0, & \text{integer } r < 0, \end{cases}$$

is defined for real or complex n and integer r, and satisfies the Pascal triangle recurrence

$$\binom{n+1}{r+1} = \binom{n}{r} + \binom{n}{r+1}.$$

By convention, $\binom{n}{0} = 1$.

The Stirling number of the second kind $\binom{n}{r}$ is the number of partitions of a set of n objects into r nonempty subsets. By convention, $\binom{n}{n} = 1$ for integer $n \ge 0$, and $\binom{n}{r} = 0$ for integers n > 0, $r \le 0$. The recurrence relation is

$$\begin{Bmatrix} n+1 \\ r \end{Bmatrix} = r \begin{Bmatrix} n \\ r \end{Bmatrix} + \begin{Bmatrix} n \\ r-1 \end{Bmatrix}.$$

The Stirling number of the first kind $\begin{bmatrix} n \\ r \end{bmatrix}$ is the number of wreath arrangements of a set of n objects into r nonempty wreaths (or, equivalently, the number of permutations of a set of n objects that can be written as the product of r cycles). For integers $n \ge 0$ and r, some identities are

Difference Calculus

Difference calculus is the discrete analog of Newton's continuous calculus. For a function f(x), some basic difference operators are

$$\Delta f(x) = f(x+1) - f(x)$$
 (forward difference),

$$\nabla f(x) = f(x) - f(x-1)$$
 (backward difference),

$$\delta f(x) = f(x+1/2) - f(x-1/2)$$
 (central difference),

$$\mu f(x) = \left(f(x+1/2) + f(x-1/2) \right) / 2$$
 (averaging operator).

$$x^{\overline{k}} = x(x+1)\cdots(x+k-1), \qquad x^{\underline{k}} = x(x-1)\cdots(x-k+1), \qquad \Delta x^{\underline{k}} = kx^{\underline{k-1}}.$$

 $x^{\overline{k}}$ is read as " x^k ascending" and $x^{\underline{k}}$ is read as " x^k descending". Using the fact that $\binom{n}{k} = \binom{n}{k} = 0$ for integers $n \ge 0$ and k < 0, relationships between x^n , $x^{\underline{n}}$, and $x^{\overline{n}}$ for integer $n \ge 0$ are

$$x^{n} = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline{k}} = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\overline{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} x^{k}, \qquad x^{\underline{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^{k}, \qquad x^{\underline{n}} = (-1)^{n} (-x)^{\overline{n}}.$$

Fundamental Theorem of Difference Calculus. Let a < b be integers, and f, F be functions such that $f(x) = \Delta F(x)$. Then

$$\sum_{a \le k < b} f(k) = F(b) - F(a)$$

Example. Find a formula for $\sum_{k=0}^{n} k^3$. Take

$$f(x) = x^3 = x^{\frac{3}{2}} + 3x^{\frac{2}{2}} + x^{\frac{1}{2}}$$
 and $F(x) = \frac{x^{\frac{4}{2}}}{4} + x^{\frac{3}{2}} + \frac{x^{\frac{2}{2}}}{2}$

for which $\Delta F(x) = f(x)$. Then by the fundamental theorem,

$$\sum_{k=0}^{n} k^{3} = \sum_{0 \le k < n+1} f(k) = F(n+1) - F(0)$$

$$= \frac{(n+1)n(n-1)(n-2)}{4} + (n+1)n(n-1) + \frac{(n+1)n}{2}$$

$$= \frac{n^{2}(n+1)^{2}}{4}.$$

Probability and Statistics

A random variable is a function $X: A \to B$ defined on a set A of outcomes. e.g., $A = \{\text{heads}, \text{tails}\}$, $B = \{0, 1\}$, X(heads) = 1, X(tails) = 0. Subsets of A are called *events*. Associated with an event $R \subset A$ is a real number P(R), $0 \le P(R) \le 1$, called the *probability* of R, which measures the likelihood of any outcome in R occurring. A probability measure P satisfies

- $(1) P(\emptyset) = 0,$
- (2) P(A) = 1,
- (3) $P(R \cup S) = P(R) + P(S)$ for any two disjoint $(R \cap S = \emptyset)$ subsets R, S of A.

Example. $A = \{5\text{-card poker hands}\}, R = \{\text{hands containing a king}\}, S = \{\text{hands with no face cards}\}.$ Then $R \cap S = \emptyset$, and $P(R \cup S) = P(R) + P(S)$.

The events R and S are independent if $P(R \cap S) = P(R)P(S)$.

For a discrete random variable X (the set B is a discrete set, e.g., $B = \{0, 1, 2, 3, \ldots\}$), the probability that X = x is

$$P(X = x) = P(\lbrace \theta \mid X(\theta) = x \rbrace) = p_X(x).$$

The function p_X is called the *probability mass function* (pmf) of X.

Example. Let $P(\{\text{head}\}) = p$, $A = \{\text{sequences of } n \text{ coin flip outcomes}\}$, $B = \{0, 1, ..., n\}$, $\theta \in A$, $X(\theta) = \text{number of heads in } \theta$. Then

$$P(X=r) = \binom{n}{r} p^r (1-p)^{n-r};$$

X is said to have a binomial distribution.

 $X: A \to B$ is a *continuous* random variable if A and B are not discrete sets, e.g., $A = B = \{\text{real numbers}\}$. In this case probabilities are given by integrals:

$$P(a \le X \le b) = P(\lbrace \theta \mid a \le X(\theta) \le b \rbrace) = \int_a^b f(s) \, ds,$$

where $f(s) \geq 0$ is called the probability density function (pdf) for X. The function

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(s) \, ds$$

is called the *cumulative distribution function* (cdf) for X; note that F'(x) = f(x).

Some standard continuous probability distributions with their notation and density function are listed below.

Distribution	Notation	pdf f(x)	Parameters
uniform	U(a,b)	$\frac{1}{b-a}$	$a \le x \le b$
normal	$N(\mu,\sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$	$-\infty < x < \infty, \ \sigma > 0$

gamma
$$GAM(\lambda, \alpha)$$
 $\frac{\lambda^{\alpha}x^{\alpha-1}e^{-\lambda x}}{\Gamma(\alpha)}$ $x>0, \ \alpha, \lambda>0$ $r=1,2,3,\ldots$ exponential $EXP(\lambda)$ $\lambda e^{-\lambda x}$ $x>0, \ \lambda>0$ hypoexponential $HYPO(\lambda_1,\ldots,\lambda_n)$ $\sum_{i=1}^n a_i\lambda_i e^{-\lambda_i x}$ $x>0, \ \lambda>0$ $x>0$ $x>0$

Define a binary random variable $Y_i(\text{success}) = 1$, $Y_i(\text{failure}) = 0$ for trial i. If the Y_i are independent and $P(Y_i = 1) = p \ \forall i$, then the Y_i/trials are called Bernoulli random variables/trials. Each trial may have c different outcomes, with probabilities p_1, \ldots, p_c . Some common discrete probability distributions follow.

Distribution	$\operatorname{pmf} p_X(r)$	Parameters
	\' /	r successes in n trials
multinomial	$\frac{n!}{r_1!r_2!\cdots r_c!}\prod_{i=1}^c p_i^{r_i}$	$r = (r_1, r_2, \dots, r_c)$ outcomes in $n = \sum_{i=1}^{c} r_i$ trials
geometric	$(1-p)^{r-1}p$	r trials up to and including first success
Poisson	$\frac{e^{-\mu}\mu^r}{r!}$	$\mu > 0, r = 0, 1, 2, \dots$

The expected value (or mean) E[X] of a discrete random variable X with pmf $p_X(x)$ is defined by

$$E[X] = \sum_{x \in B} x \, p_X(x),$$

and for a continuous random variable X with pdf f(s) by

$$E[X] = \int_{-\infty}^{\infty} sf(s) \, ds.$$

In general, the expected value of any function g(X) of a random variable X is

$$E[g(X)] = \sum_{x \in B} g(x) p_X(x) \text{ or } E[g(X)] = \int_{-\infty}^{\infty} g(s) f(s) ds.$$

The variance of X is $Var[X] = E[(X - E[X])^2]$. The mean and variance are often denoted by μ and σ^2 , respectively. σ is called the *standard deviation*.

Theorem. For any two random variables X and Y, E[X + Y] = E[X] + E[Y].

Theorem. If X and Y are independent random variables, then

$$E[XY] = E[X]E[Y]$$
 and $Var[X+Y] = Var[X] + Var[Y]$.

Example. For a Bernoulli variable Y_i , $E[Y_i] = 1 \cdot p + 0 \cdot (1 - p) = p$, $Var[Y_i] = E[(Y_i - p)^2] = E[Y_i^2] - (E[Y_i])^2 = p - p^2 = p(1 - p)$.

Example. For an *n*-trial binomial variable $X = Y_1 + \dots + Y_n$, $E[X] = E\left[\sum_{i=1}^n Y_i\right] = \sum_{i=1}^n E[Y_i] = np$

and
$$Var[X] = Var \left[\sum_{i=1}^{n} Y_i \right] = \sum_{i=1}^{n} Var[Y_i] = np(1-p).$$

Example. X with a geometric distribution has E[X] = 1/p and $Var[X] = (1-p)/p^2$.

Example. For a Poisson variable X with parameter μ , $E[X] = Var[X] = \mu$.

Example. A uniform distribution X over $a \le x \le b$ has E[X] = (a+b)/2 and $Var[X] = (b-a)^2/12$.

Example. An $N(\mu, \sigma^2)$ normal random variable has mean μ and variance σ^2 .

Example. A $GAM(\lambda, \alpha)$ random variable has mean α/λ and variance α/λ^2 .

Markov Inequality. Let X be a nonnegative random variable with finite mean $E[X] = \mu$. Then for any t > 0,

$$P(X \ge t) \le \frac{\mu}{t}.$$

Chebyshev Inequality. Let X be a random variable with finite mean μ and variance σ^2 . Then for any t > 0,

$$P(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}.$$

Consider a population described by a distribution (with mean μ and variance σ^2), where a value $X(\theta) = x$ of the random variable X corresponds to sampling one individual from the population. A sample x_1, \ldots, x_n from the population can be viewed as values of n independent identically distributed random variables X_1, \ldots, X_n . A *statistic* is a number derived from a sample or population, and the fundamental question is how sample statistics relate to population statistics.

The sample mean \bar{x} and sample variance $s^2 = \bar{\sigma}^2$ are

$$\bar{x} = \frac{x_1 + \dots + x_n}{n}, \qquad s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2.$$

These are called *unbiased* estimators, since $E[\bar{x}] = \mu$ and $E[s^2] = \sigma^2$. Observe that if s^2 were defined with 1/n instead of 1/(n-1), then $E[s^2] \neq \sigma^2$. Applying Chebyshev's inequality gives

$$P(|\bar{x} - \mu| \ge t) \le \frac{\sigma^2}{nt^2}.$$

Let S be an event space (set of outcomes), let $A, B \subset S$ be events, and let the events $B_1, B_2, \ldots, B_n \subset S$ partition S, i.e., $S = \bigcup_{i=1}^n B_i$ and $B_i \cap B_j = \emptyset$ for $i \neq j$. The conditional probability of event B, given that event A has already occurred, is defined by

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}, \qquad P(A) > 0.$$

For P(A) > 0, Bayes Theorem states that for each k = 1, ..., n,

$$P(B_k \mid A) = \frac{P(A \mid B_k) P(B_k)}{\sum_{i=1}^{n} P(A \mid B_i) P(B_i)}.$$