
Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

14. Input/Output

Intro Programming in C++

C++ Input/Output: Streams

The basic data type for I/O in C++ is the stream. C++ incorporates a complex hierarchy
of stream types. The most basic stream types are the standard input/output streams:

istream cin built-in input stream variable; by default hooked to keyboard

ostream cout built-in output stream variable; by default hooked to console
header file: <iostream>

C++ also supports all the input/output mechanisms that the C language included.
However, C++ streams provide all the input/output capabilities of C, with substantial
improvements.

We will exclusively use streams for input and output of data.

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

24. Input/Output

Intro Programming in C++

C++ Streams are Objects
The input and output streams, cin and cout are actually C++ objects. Briefly:

class: a C++ construct that allows a collection of variables, constants, and functions
to be grouped together logically under a single name

object: a variable of a type that is a class (also often called an instance of the class)

For example, istream is actually a type name for a class. cin is the name of a
variable of type istream.

So, we would say that cin is an instance or an object of the class istream.

An instance of a class will usually have a number of associated functions (called member
functions) that you can use to perform operations on that object or to obtain information
about it. The following slides will present a few of the basic stream member functions,
and show how to go about using member functions.

Classes are one of the fundamental ideas that separate C++ from C. In this course, we
will explore the standard stream classes and the standard string class.

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

34. Input/Output

Intro Programming in C++

Conceptual Model of a Stream

A stream provides a connection between the process that initializes it and an object, such
as a file, which may be viewed as a sequence of data. In the simplest view, a stream
object is simply a serialized view of that other object. For example, for an input stream:

To be, or not to be?

That is the question.

input file

executing process

We think of data as flowing in the stream to the process, which can remove data from the
stream as desired. The data in the stream cannot be lost by “flowing past” before the
program has a chance to remove it.

The stream object provides the process with an “interface” to the data.

. . .

stream object

. . . oT
b eo

.r
. .

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

44. Input/Output

Intro Programming in C++

To get information out of a file or a program, we need to explicitly instruct the computer to
output the desired information.

One way of accomplishing this in C++ is with the use of an output stream.

In order to use the standard I/O streams, we must have in our program the pre-compiler
directive:

#include <iostream>

In order to do output to the screen, we merely use a statement like:

cout << " X = " << X;

where X is the name of some variable or constant that we want to write to the screen.

Insertions to an output stream can be "chained" together as shown here. The left-most side
must be the name of an output stream variable, such as cout.

Output: the Insertion Operator

Hint: the insertion operator (<<) points in
the direction the data is flowing.

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

54. Input/Output

Intro Programming in C++

Output Examples

cout << "CANDLE" << endl;
cout << "STICK" << endl;

endl is a manipulator.

A manipulator is a C++ construct that
is used to control the formatting of
output and/or input values.

Manipulators can only be present in
Input/Output statements. The endl
manipulator causes a newline
character to be output.

endl is defined in the <iostream>
header file and can be used as long as
the header file has been included.

Inserting the name of a variable or constant to a stream causes the value of that object to
be written to the stream:

const string Label = "Pings echoed:
";
int totalPings = 127;
cout << Label << totalPings << endl;

Pings echoed: 127

No special formatting is supplied by default.

Alignment, line breaks, etc., must all be
controlled by the programmer:

cout << "CANDLE";
cout << "STICK" << endl;

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

64. Input/Output

Intro Programming in C++

Input: the Extraction Operator
To get information into a file or a program, we need to explicitly instruct the computer to
acquire the desired information.

One way of accomplishing this in C++ is with the use of an input stream.

As with the standard input stream, cout, the program must use the pre-compiler directive:

#include <iostream>

In order to do output, we merely use a statement like:

cin >> X;

where X is the name of some variable that we want to store the value that will be read from
the keyboard.

As with the insertion operator, extractions from an input stream can also be "chained".
The left-most side must be the name of an input stream variable.

Hint: the extraction operator (>>) points in
the direction the data is flowing.

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

74. Input/Output

Intro Programming in C++

Input Examples
Assume the input stream cin contains the data: 12 17.3 -19

Then: int A, B;
double X;
cin >> A; // A <--- 12
cin >> X; // X <--- 17.3
cin >> B; // B <--- -19

If we start each time with the same initial values in the stream:

int A, B;
char C;
cin >> A; // A <--- 12
cin >> B; // B <--- 17
cin >> C; // C <--- '.'
cin >> A; // A <--- 3

int A;
char B, C, D;
cin >> A; // A <--- 12
cin >> B; // B <--- '1'
cin >> C; // C <--- '7'

The extraction operator is "smart enough" to consider the type of the target variable when
it determines how much to read from the input stream.

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

84. Input/Output

Intro Programming in C++

string Input with Extraction

The extraction operator may be used to read characters into a string variable.

The extraction statement reads a whitespace-terminated string into the target string,
ignoring any leading whitespace and not including the terminating whitespace character in
the target string.

The amount of storage allocated for the string variables will be adjusted as necessary to
hold the number of characters read. (There is a limit on the number of characters a string
variable can hold, but that limit is so large it is of no practical concern.)

Of course, it is often desirable to have more control over where the extraction stops.

Assume the input stream cin contains the data: Flintstone, Fred 718.23

Then: string L, F;
double X;
cin >> L; // L <--- "Flintstone,"
cin >> F; // F <--- "Fred"
cin >> X; // X <--- 718.23

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

94. Input/Output

Intro Programming in C++

Extraction Operator and Whitespace

In programming, common characters that do not produce a visible image on a page or in
a file are referred to as whitespace.

The most common whitespace characters are:

\vvertical tab

\rcarriage return

(space)blank

\ttab

\nnewline

CodeName

By default, the extraction operator in C++ will ignore leading whitespace characters.

That is, the extraction operator will remove leading whitespace characters from the
input stream and discard them.

What if we need to read and store whitespace characters? See the get() function later
in the notes.

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

104. Input/Output

Intro Programming in C++

Details of an Extraction

cin >> X;

Assume the input stream cin contains: 12 17.3 -19

The numbers are separated by some sort of whitespace, say by tabs.

Suppose that X is declared as an int, and the following statement is executed:

The type of the targeted variable, X in this case, determines how the extraction is
performed.

First, any leading whitespace characters are discarded.

Since an integer value is being read, the extraction will stop if a character that
couldn't be part of an integer is found.

So, the digits '1' and '2' are extracted, and the next character is a tab, so the
extraction stops and X gets the value 12.

The tab after the '2' is left in the input stream.

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

114. Input/Output

Intro Programming in C++

ignore() Member Function
There is also a way to remove and discard characters from an input stream:

cin.ignore(N, ch);

means to skip (read and discard) up to N characters in the input stream, or
until the character ch has been read and discarded, whichever comes first. So:

cin.ignore(80, '\n');

says to skip the next 80 input characters or to skip characters until a newline character is
read, whichever comes first.

The ignore function can be used to skip a specific number of characters or halt whenever a
given character occurs:

cin.ignore(100, '\t');

means to skip the next 100 input characters, or until a tab character is read, or whichever
comes first.

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

124. Input/Output

Intro Programming in C++

Interactive I/O

Prompts: users must be given a cue when and what they need to input:

const string AgePrompt = "Enter your Age: ";
cout << AgePrompt;
cin >> UserAge;

The statements above allow the user to enter her/his age in response to the prompt.

Because of buffering of the I/O by the computer, it is possible that the prompt may not
appear on a monitor before the program expects input to be entered.

To ensure output is sent to its destination immediately:

cout << AgePrompt << flush;
cin >> UserAge;

The manipulator flush ensures that the prompt will appear on the display before the input
is required.

The manipulator endl includes a implicit flush.

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

134. Input/Output

Intro Programming in C++

C++ also provides stream types for reading from and writing to files stored on disk. For
the most part, these operate in exactly the same way as the standard I/O streams, cin and
cout.

For basic file I/O: #include <fstream>

There are no pre-defined file stream variables, so a programmer who needs to use file
streams must declare file stream variables:

ifstream inFile; // input file stream object

ofstream outFile; // output file stream object

The types ifstream and ofstream are C++ stream classes designed to be connected
to input or output files.

File stream objects have all the member functions and manipulators possessed by the
standard streams, cin and cout.

Streams for File I/O

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

144. Input/Output

Intro Programming in C++

By default, a file stream is not connected to anything. In order to use a file stream the
programmer must establish a connection between it and some file. This can be done in
two ways.

You may use the open() member function associated with each stream object:

inFile.open("readme.data");

outFile.open("writeme.data");

This sets up the file streams to read data from a file called "readme.data" and write output
to a file called "writeme.data".

For an input stream, if the specified file does not exist, it will not be created by the
operating system, and the input stream variable will contain an error flag. This can be
checked using the member function fail() discussed on a later slide.

For an output stream, if the specified file does not exist, it will be created by the operating
system.

Connecting Streams to Files

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

154. Input/Output

Intro Programming in C++

You may also connect a file stream variable to a file when the stream variable is declared:

ifstream inFile("readme.data");

ofstream outFile("writeme.data");

This also sets up the file streams to read data from a file called "readme.data" and write
output to a file called "writeme.data".

The only difference between this approach and using the open() function is
compactness.

Warning: if you use a string constant (or variable) to store the file name, you must add
a special conversion when connecting the stream:

string inputFileName = "readme.data";

ifstream inFile(inputFileName.c_str());

Connecting Streams to Files

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

164. Input/Output

Intro Programming in C++

When a program is finished with a file, it must close the file using the close()
member function associated with each file stream variable:

inStream.close();

outStream.close();

(Including the file name is an error.)

Calling close() notifies the operating system that your program is done with the file
and that the system should flush any related buffers, update file security information,
etc.

It is always best to close files explicitly, (even though by the C++ standard, files are
closed automatically whenever the associated file stream variable goes out of scope [see
the chapter on functions for a presentation of scope]).

close() Member Function

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

174. Input/Output

Intro Programming in C++

First of all you need to include the manipulator header file: <iomanip>

setw():

sets the field width (number of spaces in which the value is displayed).
setw() takes one parameter, which must be an integer.

The setw() setting applies to the next single value output only.

setprecision():

sets the precision, the number of digits shown after the decimal point.
setprecision() also takes one parameter, which must be an integer.

The setprecision() setting applies to all subsequent floating point values,
until another setprecision() is applied.

Formatting Numeric Output

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

184. Input/Output

Intro Programming in C++

In addition, to activate the manipulator setprecision()for your output stream,
insert the following two manipulators once:

outStream << fixed << showpoint;

(Just use the name of your output stream variable.)

Omitting these manipulators will cause setprecision() to fail, and will cause real
values whose decimal part is zero to be printed without trailing zeroes regardless of
setprecision().

Floating Point Formatting

Other useful manipulators:
bin

hex

octal

dec

scientific

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

194. Input/Output

Intro Programming in C++

Justification
- Justification refers to the alignment of data within a horizontal field.
- The default justification in output fields is to the right, with padding occurring first

(on the left).
- To reverse the default justification to the left:

Setting Justification

cout << fixed << showpoint;

string empName = "Flintstone, Fred";

double Wage = 8.43;

double Hours = 37.5;

cout << left; //turn on left justification

cout << setw(20) << empName;

cout << right; //turn on right justification

cout << setw(10) << setprecision(2) << Wage * Hours << endl;

This will produce the output: 012345678901234567890123456789

Flintstone, Fred 316.13

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

204. Input/Output

Intro Programming in C++

Padding Output
- Padding refers to the character used to fill in the unused space in an output field.
- By default the pad character for justified output is the space (blank) character.
- This can be changed by using the setfill() manipulator:

Setting Padding

This will produce the output:

int ID = 413225;

cout << "0123456789" << endl;

cout << setw(10) << ID << endl;

cout << setfill('0'); //pad with zeroes

cout << setw(10) << ID << endl;

cout << setfill(' '); //reset padding to spaces

0123456789

413225

0000413225

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

214. Input/Output

Intro Programming in C++

#include <fstream>
#include <iomanip>
#include <string>
using namespace std;

int main() {

ofstream oFile("AreaData.out");
oFile << fixed << showpoint;

const double PI = 3.141592654;
string figName = "Ellipse";
int majorAxis = 10,

minorAxis = 2;
double Area = PI * majorAxis * minorAxis;

oFile << setw(20) << "Area" << endl;
oFile << left << setw(10) << figName;
oFile << right << setw(10) << setprecision(4)

<< Area << endl;

oFile.close();
return 0;

}

Example with Manipulators

Area

Ellipse 62.8319

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

224. Input/Output

Intro Programming in C++

When you attempt to read a value from an input stream, the extract operator or other input
function takes into account the type of the variable into which the value is to be stored. If
there is a default conversion between the type of the data in the stream and the type of the
target variable, then that is applied and all is well.

What happens if the next data in the input stream is not compatible with the target
variable?

In that case, the input operation fails.

The effect on the target variable is compiler-dependent. With Visual C++, the target
variable is generally not modified (string variables are an exception).

The stream variable sets an internal flag indicating it is in a "fail state". Subsequent
attempts to read from the stream will automatically fail (see clear() later in these
notes).

In consequence, it is vital that C++ programmers design input code to reflect the
formatting of the input data. Programming to handle general, unstructured input data is
extremely difficult.

Input Failure

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

234. Input/Output

Intro Programming in C++

Consider the following input code fragments and associated input streams:

Input Examples

int iA, iB;
double dX, dY;
char cC;
string sS;

// input code stream data (space separated)
In >> iA >> iB; // 17 x 42

In >> dX >> dY; // 73 .2

In >> iA >> cC >> iB; // 73 .2

In >> cC >> iX >> sS; // 42 23bravoxray

In >> iA >> cC >> sS; // 42 23bravoxray

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

244. Input/Output

Intro Programming in C++

When you attempt to extract a value from an input stream, the stream variable returns an
indication of success (true) or failure (false). You can use that to check whether the input
operation has failed for some reason.

A while loop is used to extract data from the input stream until it fails.

Note well: the design here places a test to determine whether the read attempt succeeded
between each attempt to read data and each attempt to process data. Any other approach
would be logically incorrect.

Reading to Input Failure

Design Logic
Try to read data. (Often called the priming read.)
While the last attempt to read data succeeded do

Process the last data that was read.
Try to read data.

Endwhile

This is one of the most common patterns in programming.

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

254. Input/Output

Intro Programming in C++

. . .
const int MINPERHOUR = 60;
int Time; // time value in total minutes
int Hours, // HH field of Time

Minutes; // MM field of Time

int numTimes = 0; // number of Time values read
int totalTime = 0; // sum of all Time values

In >> Time;
while (In) {

numTimes++;
totalTime = totalTime + Time;
Hours = Time / MINPERHOUR;
Minutes = Time % MINPERHOUR;
Out << setw(5) << numTimes << "|";
Out << setw(5) << Hours << ":";
Out << setw(2) << setfill('0')

<< Minutes << setfill(' ') << endl;

In >> Time;
}

Out << "Total minutes: " << setw(5) << totalTime
<< endl;

. . .

Failure-Controlled Input Example

217
49
110
302
91
109
198

1| 3:37
2| 0:49
3| 1:50
4| 5:02
5| 1:31
6| 1:49
7| 3:18

Total minutes: 1076

Input:

Output:

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

264. Input/Output

Intro Programming in C++

The program given on the previous slide will terminate gracefully if the input file
contains an error that causes the input operation to fail:

Trace the execution…

The input-failure logic used in the sample code has more than one virtue:

- it will terminate automatically at the end of a correctly-formatted input file.

- it will terminate automatically if an input failure occurs while reading an incorrectly-
formatted input file, acting as if that point were in fact the end of the input file.

Of course, it would be nice if an error message were also generated above…

Failure-Controlled Input Example

217
49
110
xxx
91
109
198

1| 3:37
2| 0:49
3| 1:50

Total minutes: 376

Input: Output:

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

274. Input/Output

Intro Programming in C++

Incorrect Design
. . .
// NO priming read
while (In) {

In >> Time; // Read at beginning of loop

numTimes++; // . . . then process data.

totalTime = totalTime + Time;
Hours = Time / MINPERHOUR;
Minutes = Time % MINPERHOUR;

Out << setw(5) << numTimes << "|";
Out << setw(5) << Hours << ":";
Out << setw(2) << setfill('0')

<< Minutes << setfill(' ') << endl;
}

. . .

217
49
110
302
91
109
198

1| 3:37
2| 0:49
3| 1:50
4| 5:02
5| 1:31
6| 1:49
7| 3:18
8| 3:18

Total minutes: 1274

Input:

Output:

This is a classic error!

Note that the last time value is output twice. That's typical
of the results when this design error is made… watch for it.

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

284. Input/Output

Intro Programming in C++

String Input: getline()

The getline() standard library function provides a simple way to read character
input into a string variable, controlling the “stop” character.

Suppose we have the following input file:

Fred Flintstone Laborer 13301
Barney Rubble Laborer 43583

There is a single tab after the employee name, another single tab after the job title, and a
newline after the ID number.

Assuming iFile is connected to the input file above, the statement

getline(iFile, String1);

would result in String1 having the value:

"Fred Flintstone Laborer 13301"

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

294. Input/Output

Intro Programming in C++

More on getline()

As used on the previous slide, getline() takes two parameters. The first specifies an
input stream and the second a string variable.

Called in this manner, getline() reads from the current position in the input stream
until a newline character is found.

Leading whitespace is included in the target string.

The newline character is removed from the input stream, but not included in the target
string.

It is also possible to call getline() with three parameters. The first two are as
described above. The third parameter specifies the “stop” character; i.e., the character at
which getline() will stop reading from the input stream.

By selecting an appropriate stop charcter, the getline()function can be used to read
text that is formatted using known delimiters. The example program on the following
slides illustrates how this can be done with the input file specified on the preceding slide.

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

304. Input/Output

Intro Programming in C++

String Input Example
#include <fstream> // file streams

#include <iostream> // standard streams

#include <string> // string variable support

#include <climits>

using namespace std; // using standard library

int main() {

string EmployeeName, JobTitle; // strings for name and title

int EmployeeID; // int for id number

ifstream iFile("Employees.data");

// Priming read:

getline(iFile, EmployeeName, '\t'); // read to first tab

getline(iFile, JobTitle, '\t'); // read to next tab

iFile >> EmployeeID; // extract id number

iFile.ignore(INT_MAX, '\n'); // skip to start of next line

. . .

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

314. Input/Output

Intro Programming in C++

String Input Example
. . .

while (iFile) { // read to input failure

cout << "Next employee: " << endl; // print record header

cout << EmployeeName << endl // name on one line

<< JobTitle // title and id number

<< EmployeeID << endl << endl; // on another line

getline(iFile, EmployeeName, '\t'); // repeat priming read

getline(iFile, JobTitle, '\t'); // logic

iFile >> EmployeeID;

iFile.ignore(INT_MAX, '\n');

}

iFile.close(); // close input file

return 0;

}

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

324. Input/Output

Intro Programming in C++

fail() Member Function

fail() provides a way to check the status of the last operation on the input stream.

fail() returns true if the last operation failed and returns false if the operation was
successful.

#include <fstream>
using namespace std;

void main() {
ifstream inStream;
inStream.open("infile.dat");

if (inStream.fail()) {
cout << "File not found. Please try again." ;
return;

}
// . . . omitted statements doing something useful . . .

inStream.close();
}

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

334. Input/Output

Intro Programming in C++

clear() Member Function
clear() provides a way to reset the status flags of an input stream, after an

input failure has occurred.

Hits At-Bats
3 4
2 3
1 3
2 4

Hammerin' Hokie

Note: closing and re-
opening the stream does
NOT clear its status flags.

Consider designing a program to read an input file containing statistics for a baseball
player, as shown below, and to produce a summary:

Unless we know exactly how many lines of batting data are going to be given, we
must use an input-failure loop to read the batting data. But then the input stream will
be in a fail state, and we still need to read the player's name.

We can use clear() to recover from the input failure and continue reading input.

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

344. Input/Output

Intro Programming in C++

Using clear()
#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
#include <climits>
using namespace std;

int main() {

ifstream In("Hitting.data");

string playerName; // player's name
int Hits, atBats; // # of hits and at-bats in current game
int numGames = 0; // # of games reported
int totalHits = 0, // total # of hits in all games

totalAtBats = 0; // total # of at-bats in all games

In.ignore(INT_MAX, '\n'); // skip over header line

In >> Hits >> atBats; // try to read 1st game data
while (In) {

totalHits = totalHits + Hits; // update running totals
totalAtBats = totalAtBats + atBats;
numGames++; // count this game
In >> Hits >> atBats; // try to read next game data

}
. . .

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

354. Input/Output

Intro Programming in C++

Using clear()
. . .

// Recover from the read failure at the end of the
// batting data:
In.clear();
// Read the player's name:
getline(In, playerName);

// Calculate the batting average:
double battingAverage = double(totalHits) / totalAtBats;

// Write the results:
cout << fixed << showpoint;
cout << playerName << " is batting "

<< setprecision(3) << battingAverage
<< " in " << numGames << " games."
<< endl;

In.close();
return 0;

}

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

364. Input/Output

Intro Programming in C++

Every file ends with a special character, called the end-of-file mark.

eof() is a boolean function that returns true if the last input operation attempted to read
the end-of-file mark, and returns false otherwise.

The program on slide 4.24 could be modified as follows to use eof() to generate an
error message if an input failure occurred in the loop:

In general, reading until input failure is safer than reading until the end-of-file mark is
reached. DO NOT use eof() as a substitute for the input-failure logic covered earlier.

eof() Member Function

. . .
Out << "Total minutes: " << setw(5) << totalTime

<< endl;

if (!In.eof()) {
Out << endl

<< "An error occurred while reading the file." << endl
<< "Please check the input file." << endl;

}
. . .

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

374. Input/Output

Intro Programming in C++

get() Member Function

The input stream object cin has a member function named get() which returns the next

single character in the stream, whether it is whitespace or not.

To call a member function of an object, state the name of the object, followed by a period,
followed by the function call:

cin.get(someChar); // where someChar is a char variable

This call to the get() function will remove the next character from the stream cin and
place it in the variable someChar.

So to read all three characters (from the previous slide), we could have:

cin.get(ch1); // read ‘A’
cin.get(someChar); // read the space
cin.get(ch2); // read ‘M’

Computer Science Dept Va Tech August, 2001 ©1995-2001 Barnette ND & McQuain WD

384. Input/Output

Intro Programming in C++

The istream class provides many additional member functions. Here are two that are
often useful:

Other Useful Member Functions

peek() provides a way to examine the next character in the input stream,
without removing it from the stream.

putback() provides a way to return the last character read to the input stream.

. . .
char nextCharacter;
nextCharacter = In.peek();
. . .

. . .
const char PUTMEBACK = '?';
char nextCharacter;
In.get(nextCharacter);
if (nextCharacter == PUTMEBACK) {

In.putback(nextCharacter);
}
. . .

