Why study theory?

- it reveals the "essence" of some aspect of computer science
- it helps to clarify our thinking about difficult problems
- it is the foundation for building programming tools
- it can establish the properties of systems that cannot be shown through testing or other informal means

Which theories?

- Owicki-Gries: proving assertions about parallel or concurrent programs
- Hoare: proving monitors
- Milner's Calculus of Communicating Systems (CCS): modeling the behavior of agents and proving the equivalence of two agents
The Language

Resources:
Definition:
a **resource** is a named collection of program variables
Syntax:
 resource <name> (< list of variables >);
Example:
 resource r(x, y, z);

Cobegin-coend:
Definition:
a set of concurrently executed statements which end, as a set, only when all of the individual statements have completed.
Syntax:
 <resource> : cobegin S 1 || S 2 || ... || S n coend
Example:
 resource r(x, y, z):
 cobegin x = x + 1; || y = 10; coend;
The Language

Condition Critical Regions:

Definition:

a set of statement having mutually exclusive access to one or more a given condition holds among the variables of the resource(s).

Syntax:

with <resource list> when <condition>
 do <statements>

Example:

resource r(x, y, z);
with r when x > y do
 begin
 x = x + 1;
 y = y - 1;
 end
Assertions

An axiom for statement S involves two assertions of the form:

$$\{ P \} \ S \ \{ Q \}$$

precondition

postcondition

partial correctness: if P is true before S and if S terminates then Q holds after S.

An assertion about a resource r is an invariant, written $I(r)$, if the invariant is true:

- when the program begins
- during execution except within a ``with r..."
Parallel Execution Axiom

If

\{ P_1 \} S_1 \{ Q_1 \}, \{ P_2 \} S_2 \{ Q_2 \}, \ldots, \{ P_n \} S_n \{ Q_n \}

no variable free in P_i or Q_i is changed in S_j (i \neq j)
all variables in I(r) belong to resource r,

then

\{ P_1 \wedge P_2 \wedge \ldots \wedge P_n \wedge I(r) \}
resource r; cobegin S_1 || S_2 || \ldots || S_n coend;
\{ Q_1 \wedge Q_2 \wedge \ldots \wedge Q_n \wedge I(r) \}
Critical Section Axiom

If

\{ I(r) \land P \land B \} \ S \ \{ I(r) \land Q \} \n
I(r) is the invariant of the cobegin statement for which S is a process

no variable free in P and Q is changed in any other process

then

\{ P \} \ \text{with } r \ \text{when } B \ \text{do } S \ \{ Q \}
An Example

\{ x = 0 \}
add1: begin y := 0; z := 0;
\{ y = 0 \land z = 0 \land I(r) \}
resource r(x, y, z):
cobegin
\{ y = 0 \}
with r when true do
\{ y = 0 \land I(r) \}
begin x := x + 1; y := 1 end
\{ y = 1 \land I(r) \}
\{ y = 1 \}
\|\
\{ z = 0 \}
with r when true do
\{ z = 0 \land I(r) \}
begin x := x + 1; z := 1 end
\{ z = 1 \land I(r) \}
\{ z = 1 \}
coend
\{ y = 1 \land z = 1 \land I(r) \}
end
\{ x = 2 \}
I(r) = \{ x = y + z \}
Dining Philosophers Example

See annotated code in Postscript file from class web pages first.

This code shows that:
\{ eating[i] = 0 \land I(forks) \} \ \text{DP}_i \ \{ eating[i] = 0 \land I(forks) \}

where:

I(forks) = \{ [0 \leq eating[i] \leq 1 \land \\
\quad eating[i] = 1 \Rightarrow af[i] = 2 \land \\
\quad af[i] = 2 - (eating[i-1] + eating[i+1])] \\
\quad \text{for } 0 \leq i \leq 4 \}

By the Parallel Execution Axiom this means:
\{ eating = 0 \land I(forks) \}

resource forks: cobegin \text{DP}_0 \parallel ... \parallel \text{DP}_4 \ coend
\{ eating = 0 \land I(forks) \}

The invariant, I(forks), can be used to prove other properties about the solution.
Dining Philosophers Example

Prove that two adjacent philosophers, DP_i and DP_{i+1}, cannot both be eating concurrently.

First,

$\text{DP}_i \text{eating} \implies \text{eating}[i] = 1 \land \text{I(forks)}$

$\text{DP}_{i+1} \text{eating} \implies \text{eating}[i+1] = 1 \land \text{I(forks)}$

Together this means:

$\text{eating}[i] = 1 \land \text{eating}[i+1] = 1 \land \text{I(forks)}$

$\implies \text{eating}[i] = 1 \land \text{eating}[i+1] = 1 \land \text{af}[i] = 2 \land \text{af}[i+1] = 2$

$\implies \text{eating}[i] = 1 \land \text{eating}[i+1] = 1 \land$

$(\text{eating}[i-1] + \text{eating}[i+1] = 0) \land$

$(\text{eating}[i] + \text{eating}[i+2] = 0)$

$\implies \text{eating}[i] = 1 \land \text{eating}[i+1] = 1 \land$

$\text{eating}[i] = 0 \land \text{eating}[i+1] = 0$

$\implies \text{FALSE}$
Hoare's Proof Rules for Monitors

With each monitor define an invariant I that is true:

- after initialization
- after each procedure assuming that it was true before each procedure
- before each wait operation

With each condition variable define an assertion B that is true before each signal operation on that condition variable and which may be assumed true after the corresponding wait.

$$
\begin{align*}
I & \quad \{ \text{cond.wait} \} \quad I \land B \\
I \land B & \quad \{ \text{cond.signal} \} \quad I
\end{align*}
$$

Finding the "right" invariant and the "right" assertions on conditions may be difficult.
A part of Hoare's bounded buffer monitor

bounded-buffer : monitor
begin

...int count;
condition nonfull, nonempty;
...
procedure append(x : portion)
begin
 if count = N then nonfull.wait;
 // add element x to the buffer
 count = count + 1;
 nonempty.signal;
end

procedure remove(result x : portion)
begin
 if count = 0 then nonempty.wait;
 // assign to x an element removed
 // from the buffer
 count = count - 1;
 nonfull.signal;
end

...count = 0; // initialization
end;
Part of the Proof

For the bounded buffer monitor -

invariant: \(I = 0 \leq \text{count} \leq N \)
nonempty: \(B = 0 < \text{count} \)
nonfull: \(B' = \text{count} < N \)

{ I }
procedure append(x : portion)
begin
 { I }
 if count = N then { I } nonfull.wait; { I \land B' }
 { I \land B' \Rightarrow 0 \leq \text{count} < N }
 { I \land \neg (\text{count} = N) \Rightarrow 0 \leq \text{count} < N }
 { 0 \leq \text{count} < N }\
 count = count + 1; { I \land B }
 nonempty.signal;
end