The Model

Node properties:
- No shared memory
- No global clock

Channel properties:
- FIFO
- loss free
- non-dupli-cat-ing

The Problem

\[C_1: \text{empty} \rightarrow C_2: \text{empty} \]
\[$500 \rightarrow $200 \]

\[C_1: \text{transfer $50} \rightarrow C_2: \text{empty} \]
\[$450 \rightarrow $200 \]

\[C_1: \text{empty} \rightarrow C_2: \text{empty} \]
\[$450 \rightarrow $250 \]

Distributed Snapshot (Global State Recording)

Problems:
- recording a “consistent” state of the global computation
- checkpointing for fault tolerance (rollback, recovery)
- testing and debugging
- monitoring and auditing
- detecting stable properties in a distributed system via snapshots.
 A property is “stable” if, once it holds in a state, it holds in all
 subsequent states.
 - termination
 - deadlock
 - garbage collection

Definitions

Local State and Actions:

- local state: \(\text{LS}_i \)
- message send: \(\text{send}(m_{ij}) \)
- message receive: \(\text{rec}(m_{ij}) \)
- time: \(\text{time}(x) \)
- \(\text{send}(m_{ij}) \in \text{LS}_i \text{ iff time(\text{send}(m_{ij})) < time(\text{LS}_i)} \)
- \(\text{rec}(m_{ij}) \in \text{LS}_j \text{ iff time(\text{rec}(m_{ij})) < time(\text{LS}_j)} \)

Predicates:

- \(\text{transit}(\text{LS}_i, \text{LS}_j) = \{ m_{ij} | \text{send}(m_{ij}) \in \text{LS}_i \land \text{rec}(m_{ij}) \in \text{LS}_j \} \)
- \(\text{inconsistent}(\text{LS}_i, \text{LS}_j) = \{ m_{ij} | \text{send}(m_{ij}) \in \text{LS}_i \land \text{rec}(m_{ij}) \in \text{LS}_j \} \)

Consistent Global State:

\(\forall i, \forall j : 1 \leq i, j \leq n : \text{inconsistent}(\text{LS}_i, \text{LS}_j) = \emptyset \)

Global-State-Detection Algorithm

Marker-Sending Rule for a Process p:

For each channel \(c \), incident on, and directed away from \(p \): \(p \) sends one marker along \(c \) after \(p \) records its state and before \(p \) sends further messages along \(c \).

Marker-Receiving Rule for a Process q:

if \((q \) has not recorded its state) then

begin \(q \) records its state;
\(q \) records the state of \(c \) as the empty sequence;
end
else \(q \) records the state of \(c \) as the sequence of message
received along \(c \) after \(q \)’s state was recorded and before
\(q \) received the marker along \(c \).

Detecting a Stable Property

begin
record a global snapshot, \(S^* \);
test for the stable property in \(S^* \);
end;
Snapshot/State Recording Example

\[500 \quad p \quad c_1 \quad c_2 \quad q \quad 500\]

\[r\]

\[c_3 \quad c_4\]

\[M = \text{Marker}\]

<table>
<thead>
<tr>
<th>Node</th>
<th>Recorded state</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>{}</td>
</tr>
<tr>
<td>q</td>
<td>{}</td>
</tr>
<tr>
<td>r</td>
<td>{}</td>
</tr>
</tbody>
</table>

Snapshot/State Recording Example (Step 1)

\[490 \quad p \quad c_1 \quad 20 \quad c_2 \quad q \quad 470\]

\[r\]

\[c_3 \quad c_4\]

<table>
<thead>
<tr>
<th>Node</th>
<th>Recorded state</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>490 {}</td>
</tr>
<tr>
<td>q</td>
<td>{}</td>
</tr>
<tr>
<td>r</td>
<td>{}</td>
</tr>
</tbody>
</table>

Snapshot/State Recording Example (Step 2)

\[470 \quad p \quad 20 \quad c_1 \quad c_2 \quad q \quad 480\]

\[r\]

\[c_3 \quad c_4\]

<table>
<thead>
<tr>
<th>Node</th>
<th>Recorded state</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>490 {}</td>
</tr>
<tr>
<td>q</td>
<td>480 {}</td>
</tr>
<tr>
<td>r</td>
<td>{}</td>
</tr>
</tbody>
</table>

Snapshot/State Recording Example (Step 3)

\[470 \quad p \quad 20 \quad c_1 \quad c_2 \quad q \quad 480\]

\[r\]

\[c_3 \quad c_4\]

<table>
<thead>
<tr>
<th>Node</th>
<th>Recorded state</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>490 {}</td>
</tr>
<tr>
<td>q</td>
<td>480 {}</td>
</tr>
<tr>
<td>r</td>
<td>485 {}</td>
</tr>
</tbody>
</table>

Snapshot/State Recording Example (Step 4)

\[490 \quad p \quad 25 \quad c_1 \quad c_2 \quad q \quad 500\]

\[r\]

\[c_3 \quad c_4\]

<table>
<thead>
<tr>
<th>Node</th>
<th>Recorded state</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>490 {20}</td>
</tr>
<tr>
<td>q</td>
<td>480 {}</td>
</tr>
<tr>
<td>r</td>
<td>485 {}</td>
</tr>
</tbody>
</table>

Snapshot/State Recording Example (Step 5)

\[515 \quad p \quad 485 \quad c_1 \quad c_2 \quad q \quad 500\]

\[r\]

\[c_3 \quad c_4\]

<table>
<thead>
<tr>
<th>Node</th>
<th>Recorded state</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>490 {20}</td>
</tr>
<tr>
<td>q</td>
<td>480 {25}</td>
</tr>
<tr>
<td>r</td>
<td>485 {}</td>
</tr>
</tbody>
</table>