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Abstract

The Denali project provides system support for running sev-
eral mutually distrusting Internet services on the same physical
infrastructure. For example, this would enable a developer to push
dynamic content into third party hosting infrastructure such as
content distribution networks. To accomplish this, we propose a
new kernel architecture called an isolation kernel to isolate un-
trusted applications. An isolation kernel is a simple, thin soft-
ware layer that runs directly on hardware (and hence below op-
erating systems), whose function is to subdivide a physical ma-
chine into a set of fully isolated protection domains. Isolation
kernels resemble virtual machine monitors in that they expose a
virtualized hardware interface to a set of virtual machines. Un-
like VMMs, however, isolation kernels do not attempt to precisely
emulate the underlying physical architecture. By selectively mod-
ifying the hardware architecture, we enable our system to scale
up to 1000’s of virtual machines on commodity hardware. In this
paper, we describe a set of design principles that govern isolation
kernels, briefly discuss a prototype isolation kernel, and present
future work and applications of isolation kernels.

1. Introduction

The Internet is dramatically changing the way we think
about application deployment. Instead of installing shrink-
wrapped software on their PCs, users are increasingly
relying on infrastructural services such as Hotmail and
MapQuest. This “Internet services” model offers several
powerful advantages: software distribution is simplified,
upgrades and bug-fixes can be applied immediately, and ser-
vices are always on and accessible from any capable device.
The attractiveness of this model has resulted in significant
industrial and research attention into Internet service frame-
works, including .NET.

Although Internet services have compelling advantages,
the introduction of a new service currently requires a large
investment in infrastructure and administration. We believe
this high barrier to entry stifles innovation, especially when
the service must run in many locations across the wide-
area (as would be necessary to enable dynamically gener-
ated content in content delivery networks, for example). For
the Internet services model to succeed, we believe that the
ownership and management of physical Internet service in-
frastructure is best handled by third party providers such as

ISPs, and that mechanisms should be established to allow
Internet service authors to “push” new services into this in-
frastructure in a safe manner.

Because not all services warrant their own dedicated
hardware, services will need to be multiplexed on the same
physical machines, as is currently done for virtual web site
management. Unfortunately, Internet services contain ac-
tive code rather than static data, which raises serious trust
and security issues: infrastructure providers cannot trust
hosted Internet services, and services will not trust each
other. Accordingly, there is a need to provide strong isola-
tion between services, both to enforce security and to con-
trol services’ resource consumption.

In this paper, we propose a software construct called
an isolation kernel, whose purpose is to multiplex physi-
cal hardware across many mutually untrusting Internet ser-
vices by containing each service within an isolation domain.
Although there have been attempts to address security and
performance isolation within a monolithic OS [2, 10], we
believe these issues are best addressed under a monolithic
OS. An isolation kernel is a thin software layer which vir-
tualizes the underlying hardware, in much the same fashion
as a virtual machine monitor (VMM). Unlike a VMM, an
isolation kernel does not attempt to precisely emulate the
underlying physical architecture, because there are signifi-
cant simplicity, scalability, and performance benefits to be
gained by modifying it, as we will argue later in this paper.

An isolation kernel is similar in many respects to other
small-kernel architectures, such as virtual machine moni-
tors [12], hypervisors [4], microkernels [1], and exokernels
[8]. In the next section of this paper, we outline some of the
guiding design principles of isolation kernels, and describe
how our work differs from other small-kernel architectures.
Next, we describe the architecture and implementation of
Denali, our prototype isolation kernel for the x86 architec-
ture. Finally, we sketch out our future directions for our
research.

2. Design Principles and Choices

In this section of the paper, we present a number of prin-
ciples and design choices that guided us while architecting
the Denali isolation kernel. These principles were moti-
vated by technological trends, as well as characteristics of
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Figure 1. An isolation kernel. An isolation kernel is
a thin software layer which exposes a virtual machine ab-
straction, and which prevents direct sharing across VMs.

the applications that we wish to support.

Simplicity promotes security: A long history of vulner-
abilities suggests that conventional operating systems are
poorly suited to isolating and containing untrusted code. We
argue that this is a fundamental consequence of two archi-
tectural characteristics of OSs, rather than simply being a
matter of avoidable implementation flaws.

First, an OS exposes high-level abstractions, rather than
low-level resources, and enforces protection at the same
layer as the exposed high-level abstractions. For example,
files serve as an abstract container for persistent data, as
well as a unit of access control. The high level at which pro-
tection is enforced gives rise to “layer-below attacks” [13],
in which an attacker accesses a resource below the layer
of abstraction. For example, forcing a core-dump of an
application may allow an attacker to bypass virtual mem-
ory protection to inspect program state. The complexity of
OSs, which is largely due to the complexity of implement-
ing high-level abstractions, makes it extremely difficult to
anticipate and protect against layer-below attacks.

Second, a modern OS typically exposes a wide API. The
original version of UNIX had only 33 system calls; to-
day, Windows has over 3400 system calls [17]. This wide
API runs contrary to the principle of economy of mecha-
nism [16], which states that security is achieved by limit-
ing the number of access paths available to untrusted code.
Monolithic OSs are constantly evolving: each new release
contains millions of lines of new code and countless new
features. This leads to insecurity since new code is known
to contain more bugs than older, more stable code [6].

We believe than an isolation kernel must be implemented
as a thin software layer that exposes a narrow API and runs
directly on hardware; this is similar to small-kernel archi-
tectures such as virtual machine monitors or microkernels.
Rather than providing complex high-level abstractions, an
isolation kernel exposes and protects low-level hardware
resources. This greatly simplifies the implementation of
the isolation kernel, promoting security and avoiding layer-
below attacks. Because an isolation kernel defers the im-
plementation of abstractions to higher software layers (Fig-
ure 1), pressure to accumulate new features and widen its
exposed interface is alleviated.

Performance is no longer the primary issue: In the
past, small-kernel architectures have been considered in-
efficient when compared to monolithic kernels. However,
technology advances have made raw performance less of an
issue, and in many cases it has become reasonable to trade
away performance in return for reliability, security, or man-
ageability.

Additionally, recent results have demonstrated that the
performance penalty of small kernels is not prohibitive. The
Disco virtual machine monitor reported performance penal-
ties of no more than 16% over a range of applications [5].
Our early experience with Denali is even more encouraging,
as described in Section 3.

Sharing is infrequent: Operating systems have custom-
arily provided efficient mechanisms for sharing data be-
tween applications, such as fast IPC and shared file systems.
In our application domain, however, we expect sharing to be
infrequent, since Internet services are designed and oper-
ated by independent users. This suggests that we can afford
to have a high cost of sharing across isolation domains, if in
return we strengthen isolation.

The emphasis of conventional OSs on providing data
sharing mechanisms has a harmful effect on their ability
to provide isolation. For example, in most OSs, all appli-
cations see the same global file system name space regard-
less of whether they want to share data. If the file system
access control policy is not perfectly configured, then ma-
licious applications can find hard-to-spot ways of reading
or modifying other users’ data. Attackers have used sym-
bolic links to trick unsuspecting applications into reading or
modifying privileged system files 1. Although this particu-
lar vulnerability affects conventional OSs, we believe that
small-kernel architectures that encourage fine-grained data
sharing would be susceptible to the same class of vulnera-
bilities. This includes microkernel systems, which support
sharing through user-mode file servers [1], and Exokernel
systems which support sharing by downloading protection
policy into the kernel [8].

Virtual machine monitors like Disco [5] and VM/370
are better suited to isolation because they disallow direct
sharing. Each virtual machine on a VMM is confined to a
private, virtual namespace: virtual physical memory pages,
virtual disk blocks, and so forth. The default way to share
data on such a system is to send the data over a (virtual)
Ethernet segment. Thus, applications that desire complete
isolation can simply ignore all network traffic, or use fire-
wall techniques to filter out suspicious traffic.

Zipf’s law implies a need to scale: Measurement stud-
ies of web documents, web servers, DNS names, and other
network services show that popularity distributions tend to
be Zipfian [3]. Based on this, we expect that the popular-
ity distribution for Internet services will also be driven by
Zipf’s law.

Zipfian distributions are heavy-tailed, meaning that a

1Refer to CERT vulnerability notes: VU#356323, VU#747736, and
VU#426273.



non-trivial fraction of requests go to a large set of unpopu-
lar services. Individually, these services are accessed infre-
quently, motivating the desire to multiplex many of them on
a single computer for reasons of affordability and manage-
ability. However, the unpopular services collectively consti-
tute a large fraction of the total requests. Previous studies of
web cache performance have demonstrated that unpopular
objects tend to drag down overall system performance [3].

Our goal in Denali is to support both popular and unpop-
ular services. To support the unpopular, we want to be able
to host a large number of services (hundreds, if not thou-
sands) on a commodity PC. To make this feasible, we must
use main memory as a cache of active services, using disk
as backing store for the majority of services that are idle.
Thus, our system must support rapid swapping of services
off disk to mitigate the negative results in [3].

Transparency is a non-goal, and is potentially harm-
ful: One consideration for small-kernel architectures is how
to support legacy software, including OS code. Virtual ma-
chine monitors are distinct in that they can provide trans-
parent backwards compatibility for legacy operating sys-
tems [5, 12] by precisely emulating the underlying physical
architecture. Although transparency is useful for supporting
legacy software, it is independent from the issue of enforc-
ing isolation, and we believe there are compelling reasons to
allow the interface exposed by an isolation kernel to differ
from the physical architecture on which the kernel runs.

Some physical architectures are not strictly virtualiz-
able [11]. Non-virtualizable architectures (such as x86) can
be virtualized using binary re-writing techniques, however
this requires significant complexity to handle a small set of
infrequently used instructions [14]. Similarly, some compo-
nents of the hardware or firmware are rarely used by appli-
cations, but must be emulated to maintain backwards com-
patibility with legacy OSs. Examples of this include the x86
segmentation hardware and the BIOS.

The Denali isolation kernel exposes an interface that is
similar to the underlying hardware architecture, but with
several strategic modifications. In the next section, we de-
scribe our architecture modifications, which we use to en-
hance scalability and performance, while simplifying the
implementation of the isolation kernel and the services that
run on it.

Of course, giving up backwards compatibility carries the
disadvantage that we must modify legacy OS code to run
on our architecture. On the other hand, breaking back-
wards compatibility has provided us with the opportunity
to redesign the guest operating system to be virtualization-
aware. In the following section, we describe how we have
used this ability inside Denali.

3. Denali: A Scalable Isolation Kernel

The Denali kernel aims to provide strong isolation and
high scalability for Internet services. To achieve isolation,
the kernel exposes a virtualized hardware interface — vir-

tual I/O devices, virtual physical memory, etc. — to a set
of virtual machines. Each virtual machine (VM) contains
a guest OS, which contains a customary set of OS abstrac-
tions (such as TCP/IP sockets and threads), as well as one
or more applications. In this respect, the Denali kernel re-
sembles a virtual machine monitor.

Unlike VMMs, however, we have made selective modi-
fications to the underlying physical architecture to promote
scalability, performance and simplicity of implementation.

3.1. Architectural Modifications

One barrier to running a large number of concurrently
active virtual machines is idle loops inside guest OSs. To
prevent wasting CPU resources, Denali exposes an idle in-
struction, which allows a guest OS to relinquish control of
the CPU2. The VM idles until an external interrupt arrives
that requires processing. To prevent a VM from idling for-
ever, Denali exposes a virtual alarm clock, which is set by
the guest OS to raise an interrupt after a given number of
clock ticks.

Another barrier to scalability relates to the handling of
timers. On most systems, the passage of time is indicated by
a programmable interval timer, which generates an interrupt
every few milliseconds. Emulating this behavior in an isola-
tion kernel would require raising a virtual timer interrupt on
each timer tick for each virtual machine, resulting in a large
number of user/kernel crossings. Moreover, each clock tick
would wake up idle virtual machines, thereby preventing
unpopular services from being swapped out to disk.

Denali’s approach is to only raise timer interrupts to the
running virtual machine. For all other VMs, the kernel ex-
poses a global clock that advances with the hardware clock.
After a VM has been context switched, the kernel raises a
“wakeup” interrupt to indicate that the guest OS should re-
calibrate timing-related routines against the global clock.

Denali’s interrupt mechanism was designed to better
support many concurrently executing VMs. As the number
of VMs increases, it becomes likely that multiple virtual
interrupts will arrive for a given VM while it is context-
switched out. Denali delivers all pending interrupts to a vir-
tual machine in a single batch rather than enforcing a strict
serial ordering. Batching reduces the number of user/kernel
crossings, and allows the system to piggyback “informa-
tional” interrupts on normal hardware interrupts.

The Denali architecture does not expose virtual mem-
ory management hardware; instead, virtual machines re-
side in a single, flat address space, much like conventional
OS processes. As a result, guest OSs are directly linked
against applications, similar to Exokernel library operating

2The Denali idle instruction is similar to the x86 hlt instruction, which
places the processor in a halted state. However, the hlt instruction does
not have a time limit, and therefore is only used after the processor has
been idle for some period of time (usually hundreds of milliseconds). The
Denali alarm clock mechanism allows for CPU sharing at a much finer
granularity.
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Figure 2. Packet processing overhead: This timeline illustrates the cost (in cycles) of packet reception, broken down
across various functional stages. Each pair of numbers represents the number of cycles executed in that stage for 100 byte
and 1400 byte packets, respectively. VNIC refers to the virtual NIC implementation.

systems [8]. We believe this simplification is justified, be-
cause a complex service that requires multiple protection
domains can be structured to run in multiple virtual ma-
chines. Moreover, omitting virtual memory from the ar-
chitecture improves performance by reducing TLB misses
during guest OS context switches; this overhead was found
to be significant during a recent measurement of VMWare’s
workstation product [18].

Denali exposes virtual I/O devices to virtual machines,
but the interfaces to these devices have been drastically
simplified relative to real hardware devices. For example,
the virtual Ethernet device supports two operations: packet
send and packet receive. The interface to real hardware de-
vices is often more complex than necessary, which can lead
to reduced performance during virtualization [18].

The Denali architecture greatly simplifies virtual ma-
chine initialization. There is no BIOS exposed, and all De-
nali virtual devices “power on” in a well-known boot state,
eliminating the need for a guest OS to initialize devices.
These changes dramatically reduce the complexity of both
our isolation kernel (since it doesn’t need to virtualize these
architectural features), as well as the guest OSs themselves.

3.2. Implementation and Results

We have developed a prototype isolation kernel that runs
directly on x86 hardware. Our implementation borrows de-
vice drivers and low-level support from the Flux OSKit [9].
However, the “core” of the kernel (scheduling, virtual de-
vice emulation, and paging) is entirely new. We have also
constructed a prototype guest OS that contains a port of the
BSD TCP/IP stack [7], full threading support, and a subset
of the Posix API. We are currently investigating appropriate
stable storage abstractions for our guest OS.

Our initial evaluation (on a 1.5 GHz Pentium IV unipro-
cessor with 1 GB RAM) has focused on networking appli-
cations, and has been very encouraging. A breakdown of
the overhead associated with each network packet indicates
that enforcing isolation through virtualization accounts for
a relatively small fraction of the processing overhead (Fig-
ure 2). The physical device driver and guest OS TCP/IP
stack represent the largest portion of per-packet overheads;
for small and large packets, the physical device driver rep-
resents 43.3% and 38.4%, respectively, of the total receive
overhead, while traversing of the TCP/IP stack accounted
for an additional 37.3% and 41.8%, respectively.

Our current prototype can support an almost arbitrary
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Figure 3. Web server throughput: This graph shows the
aggregate serve load sustained across the set of web server
VMs, each of which is delivering 2KB web pages. Denali
utilizes the full disk swapping bandwidth for random re-
quests. For heavy-tailed request distributions, Denali’s per-
formance surpasses raw disk performance by caching pop-
ular virtual machines in memory.

number of virtual machines by swapping inactive VMs to
disk. Figure 3 demonstrates Denali’s ability to scale up to
10,000 web server VMs. Requests were distributed across
VMs according to two distributions: random and Zipfian
(heavy-tailed) with α = .8; all requests fetched a 2KB web
document. For small numbers of VMs, Denali itself is not
a performance bottleneck: the performance of the system is
a function of the performance of the applications running
on top of it. For example, Denali achieves an aggregate
throughput of over 5,000 requests per second for up to 500
web server virtual machines (not shown on Figure 3). For
large numbers of VMs, Denali’s performance is disk-bound;
our three disk subsystem can swap in 7 virtual machines per
second. Denali’s performance for random requests utilizes
the full disk bandwidth; Denali’s performance for heavy-
tailed requests exceeds the raw disk bandwidth by caching
popular virtual machines in memory.

4. Future Directions

Isolation kernels are relevant to a wide variety of applica-
tion domains. In this section, we present avenues of future
research for the Denali project. First, we discuss a set of
mechanisms that could be added to the Denali isolation ker-



nel to enhance performance or increase its functionality. We
then outline several application domains to which isolation
kernels can be applied.

4.1. Mechanisms

Performance isolation: Because an isolation kernel
runs directly on the hardware and exposes (virtualized)
hardware resources, it can precisely account for physical re-
sources consumed by each VM. This fine-grained resource
accounting should make it possible for an isolation kernel to
enforce performance isolation between mutually distrusting
applications, as well as security isolation.

Transparent sharing of resources: Isolation kernels
achieve high aggregate system performance for large num-
bers of VMs by keeping popular services in memory while
swapping unpopular services to disk. Leveraging copy-
on-write techniques to transparently share code pages be-
tween different VMs may reduce the memory footprint of
the popular services by eliminating redundant physical code
pages, improving overall system performance by making it
possible to keep a larger number of VMs in memory at a
time. This technique should prove especially effective when
many services use the same guest OS.

Checkpointing/cloning/migration: Because an isola-
tion kernel is essentially an interposition layer between a
virtual machine and the physical resources it consumes, an
isolation kernel can observe and collect the full state of a
VM. This state consists of the VM’s memory footprint and
virtual device state. Additionally, because virtual devices
on two different physical machines will have the same inter-
face, even if the underlying physical devices are different, a
VM can potentially be migrated across heterogeneous phys-
ical machines. By leveraging these properties, an isolation
kernel can provide checkpointing, cloning, and migration
capabilities.

4.2. New Application Domains

Virtual clusters: Isolation kernels introduce the possi-
bility of subdividing a physical cluster into several multi-
plexed virtual clusters, and dynamically growing or shrink-
ing the amount of physical resources given to each virtual
cluster. In this model, multiple virtual machines execute in
a virtual cluster; each virtual cluster is mapped onto some
number of nodes in the physical cluster. VMs from many
virtual clusters can be multiplexed on a single physical ma-
chine to enable high resource utilization in the face of bursty
request streams.

Virtual clusters inherit the scalability and availability
properties of traditional clusters while acquiring new ca-
pabilities. As a virtual cluster’s load increases, an isola-
tion kernel can migrate VMs within that virtual cluster to
physical machines with idle resources. Additionally, virtual
clusters can achieve high availability in the face of physi-
cal node failures. Through checkpointing, VMs running on

a failed node can be quickly restarted on a different physi-
cal node, restoring the membership of the virtual cluster to
its original state even though the physical cluster’s member-
ship has changed.

Wide Area Infrastructures: Isolation kernels allow
hosts to execute untrusted code, which should permit ap-
plication authors to “push” new network services into third-
party hosting infrastructure. For example, this should al-
low web service authors to push dynamic content generation
code into caching and content delivery networks. A related
application domain is wide-area network experimentation
infrastructure (such as NIMI [15]); isolation kernels should
allow multiple potentially untrustworthy experiments to be
deployed and executed simultaneously on shared wide-area
infrastructure.

Mobile devices: Mobile and wireless devices, such as
Palm Pilots and iPAQs, are playing an increasingly impor-
tant role in our computational infrastructure. Incorporating
isolation kernels into these devices provides a mechanism
for the safe download and execution of arbitrary code, per-
mitting these mobile devices to acquire and run context-
specific application code as they move between environ-
ments.

5 Conclusions

In this paper, we presented the design principles behind
an isolation kernel, a simple, thin software layer that runs
directly on hardware, whose function is to subdivide a phys-
ical machine into a set of fully isolated protection domains.
We argued that several emerging applications would ben-
efit from isolation kernels, as they either require the iso-
lation of untrusted code, or the ability to precisely control
and account for physical resources across competing soft-
ware services. These emerging applications include push-
ing new Internet services into third party hosting infrastruc-
ture, deploying dynamic content generation code in content
delivery networks, or pushing context-specific applications
into mobile devices as they migrate across physical environ-
ments. We briefly described the design and implementation
of the Denali isolation kernel, and presented experimental
results that show that we can scale up to a very large number
of simultaneous protection domains, as would be necessary
for many of our targeted applications. Finally, we outlined
several areas of future research.
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