
PROCESS STRUCTURING, SYNCHRONIZATION,
AND RECOVERY

USING ATOMIC ACTIONS

D. B. Lomet
IBM T.J. Watson Research Center

Yorktown Heights, N.Y. 10598 *

This paper explores the notion of an atomic action as a method of process structuring. This notion,
first introduced explicitly by Eswaren et al [6] in the context of data base systems, reduces the problem
of coping with many processes to that of coping with a single process within the atomic action. A form
of process synchronization, the await statement, is adapted to work natural ly with atomic actions.
System recovery is also considered and we show how atomic actions can be used to isolate recovery
action to a single process. Explicit control of recovery is provided by a reset procedure that permits
information from rejected control paths to be passed to subsequent alternative paths.

Key Words and Phrases: multiprocessing, synchronization, recovery, mutual exclusion

CR Categories: 4.22, 4.32

1. Atomic Actions

Introduction

It has long been realized that some way of re-
stricting process interact ion is required if programs
involving multiple processes are to be correctly imple-
mented. Ideas similar to atomic actions have been
suggested for this purpose as far back as Dijkstra 's
famous paper [5]. Thus Dijkstra postulates that cer-
tain primitive operations "are to be regarded as indivi-
sible, non-interfering actions...". Brinch Hansen states
[1], even more emphatically that "It is impossible to
make meaningful statements about the effects of con-
current computat ions unless operations on common
variables exclude one another in time. So, in the end,
our understanding of concurrent processes is based on
our ability to execute their interactions strictly sequen-
tially." An atomic action, as we use the term, is mere-
ly a device for permitting the writer of a procedure to
secure the same benefits of atomicity, i.e. indivisibili-
ty, non-interference, strict sequencing, as is enjoyed
by the primitive operations.

* This work was performed while the author was on a sabbati-
cal at the University of Newcastle-upon-Tyne and was partially
supported by a research grant from the Science Research Coun-
cil of Great Britain.

The important properties of atomic actions can be
expressed in a number of equivalent ways. We illus-
trate three.
1. An action is atomic if the process performing it is

not aware of the existence of any other active
process (can detect no spontaneous state change)
and no other process is aware of the activity of
this process (its state changes are concealed) dur-
ing the time the process is performing the action.

2. An action is atomic if the process performing it
does not communicate with other processes while
it is executing the action.

3. Actions are atomic if they can be considered, so
far as other processes are concerned, to be indivi-
sible and instantaneous, such that the effects on
the system are as if they were interleaved as op-
posed to concurrent.

Background

The current widely known process structuring
mechanisms do not provide the programmer with the
ability to specify atomic actions. We review some of
these below.

Dijkstra [5] proposed semaphores as a mechanism
by which a programmer could assure that a sequence
of actions could be regarded as indivisible. The idea is
to use semaphores to assure that code intended to be

128

indivisible is executed by only a single process at a
time. A semaphore is used to guard the code. So long
as process interactions can only occur in the "critical
section" guarded by the semaphore, the code will
function as an atomic (indivisible) action.

When processes can interact by means of several
common variables and while executing several differ-
ent sections of code, mutual exclusion by means of a
semaphore guarding a critical section no longer can
assure atomicity. Consider first the case of a single
common or shared variable v that is accessed by sever-
al sections of code executed by different processes.
One now needs a convention by which a semaphore
can be associated with a shared variable so that all
code accessing the variable is required to test the
same semaphore. Such a semaphore has been called a
lock[4]. Locks provide a way of assuring that only
one process has access to a shared variable at a time.

Brinch Hansen [1] introduced the idea of a critical
region as a means of structuring the seizing and re-
leasing of lock semaphores. Thus, to access a com-
mon (shared) variable "v", one specifies a critical
region

1.(1)
region v do S

where only code in S is permitted access to "v".Fur-
ther, if one process is in a critical region associated
with shared variable "v", all other processes are ex-
cluded from regions associated with "v".

Problems arise for critical regions as soon as one
is interested in accessing more than one variable. Not
only is deadlock a potential problem but one may have
difficulty assuring that the critical regions are atomic.
Consider the code fragment below:

1.(2)
region v do

region w do Sl;

t *

region w do $2;
end;

The outer critical region (i.e. for "v") is no longer
atomic. A second process can examine "w" at (t) and
change "w" so that $2 sees the change, thus commu-
nicating with the process in "region v" and destroying
the atomic nature of the region.

Such code sequences can be transformed, of
course, into ones in which the variables are held for
the duration of the outer region and these will be at-
omic. However, subtle cases can arise that require

much more knowledge and care if atomicity is to be
preserved. Consider the skeletal program of 1.(3).

1.(3)
b:procedure;

region w do
begin;

a;

"t •

a;
end;

end b;

a:procedure;
region v do

s;
end a;

Unless the writer of procedure "b" is fully aware
of the code in procedure "a" (an unfortunate require-
ment, to say the least) and seizes "v" as well as "w",
then, as shown in 1.(3), the procedure "b" will not be
atomic since communication can occur at (t) .

A way of assuring that some actions can be guar-
anteed to be atomic is to make use of monitors as
expounded by Brinch Hansen [1] and Hoare [8]. A
monitor is similar to an instance of a SIMULA class
[3], i.e. it is a data object that possesses not only vari-
able components but also procedure components.
Then additional constraints are placed on the use of
these components in a multiprocessing environment.
These are, quoting [8]
1. "only one program [process] at a time [can] suc-

ceed in entering a monitor procedure.. ."
2. "Procedures local to a monitor should not access

any non-local variables other than those local to
the same monitor."

3. "these [local] variables of the monitor should be
inaccessible from outside the monitor".

These constraints assure that the monitor procedures
are atomic.

There are two problems with monitors. One,
atomic actions involving more than one monitor must
be implemented in an indirect way, perhaps by using
monitors to realize semaphores. Two, the first const-
raint on monitors, i.e. that only one process can be
executing any of the collection of monitor procedures,
is more restrictive than necessary. What is required,
simply and directly, is that monitor procedures be
atomic.

Data base systems present many of the same prob-
lems as operating systems. In some respects, however,
the problems are even more severe. In particular, the
set of records (shared variables) that are to be ac-
cessed during a " t ransact ion" may be very hard to
determine ahead of time. Nonetheless, users desire to
be presented with a consistent view of the data, i.e.
one in which each of them appears to be the sole user

129

of the system. It is for this reason that transactions
possessing the attribute of being atomic were intro-
duced by Eswaren et al [6]. A number of interesting
properties of such transactions were established in [6]
but the terminology used is data base oriented and no
concrete notation is suggested. The next section pres-
ents and motivates a notation, which will subsequently
be augmented by a notation for process synchroniza-
tion and recovery.

Action Procedures

What is needed is a facility by which the writer of
a procedure can directly state his intention that a pro-
cedure be atomic. We regard the procedure mecha-
nism as the extension mechanism for operations.
Therefore, any property that is possessed by a primi-
tive operation should be expressible when a user pro-
vides a procedure. In particular, it should be possible
for a user to write a procedure that exactly reproduces
the effect of any given operation. For this reason, it is
essential that a mechanism be provided that permits
the writing of atomic procedures. It is this line of rea-
soning, along with considerations of system recovery,
that led us, independent ly of [6], to the notion of
atomic actions and action procedures.

We suggest the following notation for action pro-
cedures.

1 .(4)
<identifier > :action(< parameter-list >);

<statement-list>
end;

The semantics of actions are the same as those of
procedures except that actions are to be performed as
atomic actions, i.e. they are to be indivisible, etc. It
should be clear that the difficulties of 1.(3) can then
be avoided by writing:

1.(5)

b: action; a: action;
a; S;

end;

a;

end;

That "b" is an action assures that it is atomic regard-
less of the procedures or actions it may call. The ef-
fect of this is to shift the responsibility for resource
acquisition and release to the implementor of actions
rather than being the responsibility of the programmer
using actions.

The shift of resource acquisition and release from
user to implementation is simultaneously a great re-
sponsibility and a great opportunity. The implementa-
tion must now assure that deadlock does not occur (or
can be overcome) while maximizing the amount of
concurrency. The opportunity arises because the im-
plementation is no longer constrained by explicit direc-
tions from the user. The user benefits enormously by
having this entire messy area removed from his con-
cern, thus enabling him to concentrate on the remain-
ing program logic.

It should be clear that resources that can only be
referenced by a single process require no special pro-
tection in order to assure that actions are atomic. This
observation suggests that we syntactically distinguish
shared and private resources. Doing this greatly eases
the implementat ion burden by identifying those varia-
bles for which there is contention, i.e. the shared
variables. Brinch Hansen [1] has previously made this
suggestion though coupled with critical regions. By
declaring variables as shared or private, the implemen-
tation problems for atomic actions should be compara-
ble to those for critical regions.

The shared (or private) attribute applies to an
object as a whole and not to its separate components.
Local variables of a procedure are, of course, always
private. To enforce that private objects not be accessi-
ble to other processes, we must insist that references
to private objects not be assigned to shared objects. Of
course, references to shared objects can be assigned to
private objects. They would not otherwise be accessi-
ble.

The shared/private attribute is useful in other
ways as well. First, it serves as valuable documenta-
tion, identifying the variables that are potential com-
municat ion links between processes. Second, it is
useful in memory management . One can garbage
collect private resources that are no longer accessible
by their associated process. One need not examine all
processes in the system looking for additional refer-
ences since none can exist. Further, when a process
terminates, all its private resources can be reclaimed.

Implementation Issues

There are a number of ways that atomic actions
might be realized. A particularly simple one in a multi-
programming system is to execute an action with inter-
rupts disabled. That is, no interrupts are taken and the
action retains control of the system until it completes.
In effect, it seizes all system resources during its
execution. This strategem exploits the property that
actions can be interleaved, i.e. concurrent processing
in which several processes execute simultaneously is
not required in order for an action to complete.

130

In a multiprocessor system, if we wish to exploit
resources efficiently, then it is important to attempt to
maximize concurrency. This requires that only re-
sources actually needed by an action during its execu-
tion be acquired. Other processes wishing to use these
resources must wait for them to be released.

Eswaren et al [6] has identified the pattern of
resource acquisition and release required to support
atomic actions. Such a pattern is called two phased.
It arises as follows. As a process executing an atomic
action proceeds, it acquires the shared resources it
needs. This is called the "growing phase". The set of
resources held is constantly increasing since a process
must not release any resources so long as there may
be additional resources that it will need, [See 1.(3)]
Once any resource is released, no others may be ac-
quired and the set of held resources is constantly de-
creasing. This is called the "shrinking phase". The
conceptual "instant of t ime" ta at which the action
occurs can be regarded as the time at which the first
resource is released. It is established in [6] that this
discipline of resource acquisition and release guaran-
tees that actions have a serial schedule, i.e. their ef-
fects are as if they are interleaved. Figure 1 illus-
trates this strategem.

Resources
ts = action start

ta = conceptual time

I
I
ts

"1 le = action end

' L_ I
o

' I
!

i
I
! ,

,,
!

!

I

4-growing- ta ~shrinking~ te
phase phase

Time

Resource acquisition and release as a
function of time for atomic actions.

Figure 1

It is possible to refine this strategy. Observe that
resources that are merely examined by an action need
not be concealed from other processes. It is sufficient
if other processes are preveffted from changing these
resources. Acquisition of resources such that other
processes can examine but not change them is called
"locking in the shared mode" [7]. Resources that are

updated by an action must, of course, have these up-
dates concealed from other processes. Thus, when
these resources are acquired, no other process must be
permitted to examine them. Such resource acquisition
is called "locking in the exclusive mode" [7]. Both
forms of locking must be two phased with the same ta
[6,7].

The resource acquisition and release strategy de-
scribed above does not constitute a resource manage-
ment algorithm. A user cannot determine whether he
executes alone or concurrently. How resource conten-
tion is handled if concurrent execution is to be
achieved is not stated. Nor have we described a me-
thod for coping with deadlock or indefinite postpone-
ment. The analysis above has merely provided the
framework in which a resource management algorithm
must operate.

2. Process Synchronization

Synchronization using Actions

The sufficiency of atomic actions to provide syn-
chronization can be demonstrated by presenting an
implementat ion of semaphores in terms of atomic
actions. Since semaphores are capable of realizing
critical regions, conditional critical regions, and moni-
tors, there can be no doubts about the functional ade-
quacy of atomic actions for providing synchronization.

We provide semaphores by means of a SIMULA
like class [3], the component procedures of which
either are or contain action procedures. The sema-
phore class is defined in 2. (1).

The code for "V" needs no particular explanation.
It is an action procedure and hence performs its ef-
fects as an atomic operation. The code for "P" is
somewhat more complicated. First, "P" is not itself an
atomic action. Rather it loops continuously, the body
of the loop being atomic but each cycle of the loop
providing an opportunity for changes to be made to
"sem". Within the action body, "sem" is tested. If
found to be greater than zero, the continuously testing
loop is terminated with "sem" decremented by one.
The loop termination is accomplished by calling the
escape procedure "proceed". This construct is a varia-
tion of the "label" procedures of Landin [9] and Clint
and Hoare [2]. When an escape procedure terminates,
it returns control to the caller of its lexically enclosing
procedure. Thus, when "proceed" terminates, control
returns to the caller of "P".

There are two difficulties with this semaphore
class definition, in particular with the body of P.
1. The repeated testing of "sere" constitutes busy

waiting, consuming real processor time.

131

2.(1)
semaphore :class;

sem:integer initial(0)
v: action;

sem := sem+l;
return;
end;

P:procednre;
proceed:escape; t

return;
end proceed;

repeat(
action; $

if sem _> 0 then
begin;

sem := sem- 1;
proceed;
end;

end;)
end P;

end semaphore;

$ An unnamed action procedure is written here where it is
to be executed, in the same way as a begin block.

t An escape procedure named "proceed", not an "escape"
statement. See the text.

2. If several processes are testing the same sema-
phore, a race exists and there is no guarantee that
some processes will not be subjected to indefinite
delay. This is so because no scheduling policy is
provided.

Busy waiting has yet a third difficulty if we wish
to provide synchronization within an atomic action.
Notice that the busy waiting in P involves time slots in
which "sem" is accessible to other processes because
the "wait" loop consists of a succession of atomic
actions rather than being embedded in one large ac-
tion. In a single atomic action the variables within the
action, once examined, cannot be changed by other
processes. Thus, busy waiting within a single action
would be in vain.

It might be argued that, as with the procedure P,
one can always provide for the busy waiting to involve
many atomic actions, with other processes thus capa-
ble of changing the tested variables. This is extremely
difficult to arrange, however. Let us suppose that
"A" is an action procedure, that "B" is an an ordinary
procedure, and that "B" uses semaphores. So far as
"B" is concerned, such use of semaphores should
result in a workable program. If, however, "B" is
called from "A", it becomes part of an atomic action,
and hence, so does the busy waiting in "B". Now,
however, the busy waiting will never detect changes in
"sem" and the program will loop forever. If "sem" is
permitted to change, then a communication link has

been established between the process executing A and
B and the process changing "sem", thus destroying the
atomic nature of action procedures.

The Await Statement

The problem with permitting "sem" to change is
the fear that communicat ion will be established with a
process inside an action procedure. But if such a
process does not remember that it has seen previous
values for "sem", i.e. if there is no way for it to sub-
sequently determine whether the test was satisfied the
first time or only after many repetitions, then we can
take a different view. This view is that an action pro-
cedure "A" did not commence its execution until after
"sem" had changed.

What we need in order to realize this view in
which the entire action is delayed until the test can be
satisfied on its first execution, is a mechanism that
informs the system that this is our intent and permits
the system to enforce the required constraints. For
this purpose, the await statement is introduced. The
intent of await is similar to that suggested for it in
[1,8], but the description of it is different in order to
maintain the integrity of atomic actions.

The await statement has the following syntax:

2 . (2)
await(<boolean expr>) then <procedure>

Following our view that all executable constructs
should be describable as some form of procedure, we
produce 2.(3) as the semantics of the await statement.

2.(3)
await:action(test:boolean function, body:procedure);
~t delay(atomic action until prescience

tells us that "test" is true, or that
it escapes, then immediately execute
the following)
if test then

begin;
body;
return;
end;

else error; t
end await;

t "error" might be, for example, an escape procedure.

It is, of course, true that such a procedure cot/ld
not be written which is why await must be primitive.
The "delay" at (:~) represents a bit of magic that
cannot be expressed otherwise. It must be guaranteed
that no subsequent testing on the part of a process can

132

determine how many times the " tes t" expression is
executed. In order to assure this, it is required that
" tes t" have no side effects. This prevents the reten-
tion of any state change other than the result of the
expression, which will be true when control f inally
passes to the then clause. Notice that " tes t" is evaluat-
ed in the action procedure with "body" . This assures
that there is no possibility of the variables in " tes t"
changing between the evaluat ion of " tes t" and the
execution of "body" and hence guarantees that " tes t"
remains true until (or unless) "body" changes those
variables. When await is itself executed within an
action procedure, the evaluation of " tes t" ensures that
the variables upon which " tes t" depends can no longer
be changed, except by the process executing this
action. Two awaits, one with " tes t" and the other with
"~test" as below:

2.(4)
action;

await test then S1;

t await ~test then $2;

end;

in which both are within the same action, will result in
the process executing this action being indefinitely
delayed at (t) , provided the process itself did not
change the variables of " tes t" . Of course, if the vari-
ables of " test" cannot be changed by some other proc-
ess, then the process executing 2.(4) cannot complete.
Such situations can never be completely el iminated
without drast ical ly reducing the power of the lan-
guage. This is true whether or not await is provided.
One can, in fact regard endless looping or recursion as
instances of the same problem.

Implementation lssues

The preceding section introduced await statements
without placing any constraints on the form of the
boolean expression that was used for synchronization.
To reduce implementat ion problems, it may be desira-
ble to restrict the boolean expression.

Whenever an await expression is not satisfied im-
mediately, it is necessary to suspend the executing
process and place it on a queue of waiting processes.
Many strategies for this are available, part icularly if
we are not concerned with .whether our waiting proc-
esses resume as quickly as possible. However , it seems
desirable for the implementa t ion to a t tempt re-
execution of an await expression whenever one of its
variables changes. One would like, therefore, to iden-

tify those variables that might cause the resumption of
some waiting process.

One could interpretively test some indicator asso-
ciated with every "shared variable to determine whether
a process waits on this variable. However, one can
greatly reduce such in terpre ta t ion while enhancing
program readabil i ty if variables used for synchroniza-
tion are explicitly designated. Thus, we suggest that at
least one of the variables in an await expression be
designated as a synchronizing variable, i.e. be declared
with the synchronizing attr ibute. Our implementat ion
problem is then confined to synchronizing variables.
Only synchronizing variables need be permit ted to
change during the repea ted evaluat ions of the await
expression, and only the updat ing of synchronizing
variables need result in in terpre ta t ion to discover
whether waiting processes should be resumed. With
respect to acquiring and releasing resources, only
synchronizing variables might ever be acquired and
released several times by an atomic action, and then
only during the repeated evaluations of the first await
expression in which they occur.

Addi t ional restrictions might be required in terms
of the number of variables and the operat ions permit-
ted upon them in order to reduce implementat ion cost
and improve efficiency. The most restrictive require-
ment would be for each await expression to consist
solely of a single synchronizing boolean variable. Less
severe restrictions should also be feasible.

One important feature of the await s tatement in
conjunct ion with action procedures is that, unlike the
case for monitors and condit ional critical regions, the
concepts do not require the exposure of an underlying
implementat ion in order for them to be understood.
Thus, no explicit mention (at the conceptual level) of
process queues is required, though obviously, an im-
p lementa t ion will exploit queues and will require a
scheduling strategy. Further , one need not be con-
cerned with maintaining invariants at the point where
an await s tatement occurs. Those parts that have be-
come temporar i ly invalid because of updates preceding
an await are exactly those parts of the system state
that are not accessible to other processes. The compo-
nents available to other processes, since they are un-
changed, still satisfy their required invariants.

An Example:Buffers

Buffering is a common technique for optimizing
the performance of paral lel processes of the producer-
consumer variety. While a consumer cannot consume
what a producer has not yet produced, a buffer per-
mits a p roducer to " race ahead" of the consumer,
producing results that are retained in the buffer for
subsequent consumption. Thus, in addition, buffers

133

reduce the possibility that a consumer will be delayed
by waiting for a result from a producer.

We wish to provide buffers by means of actions
and await statements. Our first a t tempt will be to
modify slightly previous solutions in terms of condi-
tional critical regions or monitors. This is shown in
2.(5).

2.(5)
buffer:class shared;

frame:array(0:N-1) of T;
count:integer initial(0) synchronizing;
head:integer initial(0);
send:action(x:T);

await(count < N-l) then
begin;

frame(headncount) := x; f
count := count+ 1;
end;

end send;
receive:action(y:T);

await(count > O) then
begin;

y := frame(head);
head := head. 1; f
count := count-l;
end;

end receive;
end buffer;

t . is addition modulo N.

This solution is adequate when the use of the
buffers occurs outside of all atomic actions. Unfortu-
nately, a problem arises when "send" or " rece ive" are
used within atomic actions. Consider " rece ive" .
When a process P executes " rece ive" in an atomic
action, the changes it makes to "head" and "count"
cannot be seen by other processes. Hence, these proc-
esses cannot execute " send" (or " r ece ive") , and in
particular, cannot refill the buffer, until P completes

its atomic action.

Thus, only as many messages can be received in
an atomic action as are in the buffer at the time that
the first " rece ive" is executed. This is highly unfortu-
nate as it introduces a large measure of time depend-
ence, and hence, uncertainty. One would like to ex-
ploit the full potential of the buffer, i.e. all its frames,
whether the buffer is used outside of or within an
atomic action.

Another pitfall must be avoided. In an atomic
action, it should not be possible tO receive more mes-
sages than can be contained at one time in the buffer.
Otherwise, we will have established communicat ion
into the atomic action. The desired solution allows the

maximum flexibility in sending and receiving messages

consistent with the constraints imposed by the atomici-
ty of actions of the communicat ing processes. The
class defined in 2.(6) provides precisely that.

2.(6)
buffer:class shared;

frame:array(O:N-1) of T;
empty:array(O:N-1) of boolean

initial(true) synchronizing;
head:integer initial(O);
tail:integer initial(O);
send:action(x:T);

await(empty(tail)) then
begin;

frame(tail) := x;
empty(tail) := false;
tail := tail. 1; f
end;

end send;
receive:action(y:T);

await(- empty(head)) then
begin;

y := frame(head);
empty(head) := true;
head := headta 1; f
end;

end receive;
end buffer;

t . is addition modulo N.

Each buffer frame is only accessed if it is actually
needed and the control information governing the
buffer is distributed as separate information for each
frame. Further, importantly, the pointers "head" and
" ta i l" are distributed to consumer (" r ece ive") and
producer (" send") , respectively. This distribution of
control information can be readily seen by examining
Figure 2 below which illustrates the relations between
the various components of the buffer as implemented

in 2.(6) .

tail = 2 •

head = 6 •

frame
'1 / z i g / ~ /

/ / / / / / / /
/ / / / / / / /
I r~ rJ rJrA rJ rAM

The bounded (circular) buffer described by the program
of 2.(6). The shaded elements of "frame" contain data.

Figure 2

134

Note that once a frame has been accessed, it can-
not be reused until the action is complete (except by
the action itself). The "send" and "receive" proce-
dures are almost completely symmetric, and hence, the
flexibility provided to receivers is also provided to
senders. Thus, merely because a buffer is full (or al-
most so) when the first send is issued within an action
does not prevent it from ultimately sending as many
messages as there are buffer frames. Other processes
can continue to read messages deposited in the buffer
by prior actions, making those frames ultimately avail-
able to the sending action.

3. System Recovery

A Unit of Recovery

By system recovery we mean the undoing of er-
rors as opposed to their correction. This is usually
thought of as consisting of two phases:
1. the rolling back of the system to a previous state,

assumed to be valid, by undoing some set of ac-
tions, presumably including the erroneous ones.

2. the re-performance of the actions undone in 1. that
were not (known to be) erroneous.

An error is usually associated with or detected in
some process while recovery to a "checkpointed" state
may involve many other processes. Thus, step 2. is
needed so that correct actions are not lost. It should
be clear that with a sufficiently comprehensive system
log, such system recovery is always possible, though at
rather great expense, so long as errors have not es-
caped to the "outside world".

One need not back up the entire system to provide
a method of undoing errors. In an appropriately struc-
tured system, in which a programmer identifies the
units of recovery, it becomes possible to restrict the
undoing of errors to the process (or unit) in which
they occurred. A mechanism for so structuring systems
has been introduced by Randell [10] who calls this
unit a recovery block.

The idea of a recovery block, in so far as undoing
errors is concerned, is to isolate the process executing
it from other processes. Randell states[10] that
"communication, whether it involves explicit message
passing or merely reference to common variables,,
would destroy the value of the...recovery block, and
hence must be prohibited." This restriction assures
that recovery blocks are, in fact, atomic.

By preventing other processes from becoming
dependent upon the effects of an atomic action until
the action is complete, only the process executing the
action is affected by errors in the action. Hence, only
this process needs to be restored to a previous state.
And restoring this process involves restoring to a pre-

vious state only that part of the system that is modi-
fied by this process during the execution of the atomic
action. It is unnecessary to re-perform actions of other
processes since none of these were undone.

Gray et al [7] point out that a somewhat less re-
strictive form of " t ransact ion" than atomic transac-
tions also possesses this attribute of being independ-
ently recoverable. These " t ransact ions" , called
"degree 2 transactions" (atomic "transact ions" are
degree 3) only conceal all changes until completion.
Atomic actions not only prevent this communication
out of an action but also prevent communication from
other actions into an atomic action. Being subject to
this weaker restriction, degree 2 transactions do not
necessarily, as a result, possess a serial schedule nor
are their effects reproducible if they are re-executed.

Recovery Bookkeeping

In order to permit atomic actions to be recovera-
ble, their implementation must be such that
1. updated resources, i.e. those locked in the exclu-

sive mode, are not released until the action is
completed. Once a modified resource is released,
independent recovery can no longer be assured as
another process may examine the resource and
hence become dependent upon it.

2. the initial states of all resources modified by the
action can be reconstructed. This usually involves
maintaining a time ordered log of update opera-
tions on which overwritten information is recorded
together with its location.

In [10], recovery is realized by means of a mecha-
nism called a "recursive cache". Rather than record-
ing all modifications and then undoing them in reverse
time order, only the first change in any location is
recorded. All modifications to the system state must
first be checked, interpretively at run time, to deter-
mine if a previous change has already been recorded.
This means, of course, that only the starting state of a
recovery block can be restored, and not intermediate
ones, but this is all that is required.

A "recursive cache" is but one of a number of
methods for providing recovery. A compiler could, in
a large number of cases, identify updates that do not
represent initial changes in a recoverable atomic ac-
tion and permit these updates to run without addition-
al interpretive overhead. Updates that might represent
initial changes in an atomic action could be logged.
One might, as with the "recursive cache", try to elimi-
nate from the log all changes after the first one, but
there is no need to do so. Further, strategies that are
only partially successful in eliminating redundant log
entries are also possible. One might employ, for ex-
ample, a small associative store with recently logged

135

i tems and el iminate addi t ional potent ia l log entries
a l ready in this associative memory. This is quite simi-
lar to dynamic address translat ion in a virtual memory.
These recovery strategies all need to be evaluated
carefully.

Reset Procedures

Recovery facilities are, in effect, means of provid-
ing backtracking. Such backtracking is usually present-
ed at the programming language interface in a more or
less implicit guise, e.g. recovery blocks, backt rack
programming, etc. There are important advantages to
explicit invocation of recovery facilities, part icularly if
the abil i ty to communica te informat ion from the
"fa i led" program path to al ternative ones is desired.
What we introduce is just such a feature, called a
reset procedure.

A reset procedure derives its effect from its lexical
context in much the same way as an escape procedure,
previously used in 2.(1) and descr ibed in [2,9]. In
addit ion to the effects of an escape, a reset procedure
also undoes all changes produced by code executed
since its enclosing procedure was invoked. We require
that this enclosing procedure be an action procedure
so as to isolate the recovery of the process executing
it from other processes. An action procedure then
becomes the unit of recovery. Consider the skeletal
program of 3. (1).

3.(i)
x: action;

y:reset(a);

end y;
z:procedure;

b: local variable;

t y(b);
end z;

$ z;

end x;

We assume that the call (~.) to procedure "z" is
executed in action "x". Both "x" and "z" modify the
process state by means of, e.g. updat ing variables
global to "x". However , "z" encounters some diffi-
culty it cannot cope with and realizes that some of the
changes made have been erroneous. It, therefore ,
calls "y" at (t) , passing some information via argu-
ment "b" . When "y" is called, all changes to variables
global to "x" are erased and the local variables of "x"

are re-initialized. Only those changes produced by
"y" will be detectable subsequently. When "y" termi-
nates, it returns control to the caller of "x", exactly as
if "y" had been an escape procedure.

We should offer a word of caution concerning the
argument(s) to a reset procedure. If an argument is a
variable passed by reference, the reset procedure will
not see its value at the moment of call but ra ther its
value after recovery, i.e. the value the variable had
when the enclosing action was entered. Passing argu-
ments by value does not, of course, have this potential
confusion.

An Example:Recovery Blocks

We illustrate the use of reset procedures by pro-
gramming an implicit recovery mechanism, i.e.
Randel l ' s recovery blocks [10]. Basically, a recovery
block is a control structure that consists of two main
components .
1. an "accep tance " tes t " that must be satisfied on

exit from the recovery block, i.e. it is a boolean
expression that must evaluate to true.

2. a set of a l ternat ive bodies that are executed to
produce the desired effects. The first al ternative
body is executed and the acceptance test evaluat-
ed. If true, the recovery block is complete . If
false, recovery takes place, returning the block to
its initial state after which the next a l ternat ive
body is executed, etc.

A syntax for recovery blocks is:

3.(2)
ensure <boolean expr>

by <procedure>
{else by <procedure>} *
else error;
end;

The procedure of 3 .(3) provides the recovery
semantics required of a recovery block. The resetting
in "ensure" prior to the execution of the first al terna-
tive can be avoided if the invocation of " r e c o v e r (l) "
is replaced by most of the body of " recover" . This
results in duplicate code. Since there are no effects to
be undone at " r e c o v e r (l) " , little if any cost is in-
volved in this initial resetting.

Many other appl icat ions should exist for reset
procedure , including some in which information of a
more essential nature than i l lustrated for recovery
blocks is passed from the re jected control path to its
a l ternat ive. Sussman and McDermot t [11] present a
cogent argument for this, though advocat ing a very
different mechanism for accomplishing it.

136

3.(3)

ensure:action(accept:boolean function,
alternative:array of procedure);
recover: reset(j:integer);

alternative(j);
if accept then return;
else

if j < highbound(alternative)t then
recover(j+ 1);

else error;
end recover;

recover(1) ;
end ensure;

t highbound is a function that returns the upper bound of
a vector, i.e. its maximum index.

$ error might designate an escape or a reset procedure.

5. Summary

Atomic actions have been explored as a means of
structuring multiple process programs. Action proce-
dures were suggested as a way of introducing atomic
actions into a programming interface. Synchronization
was achieved by means of the await statement, without
exposing any underlying queueing or making explicit
the acquisi t ion and release of resources. Together ,
action procedures and the await statement make multi-
ple process programming very little more difficult than
sequential programming.

Because atomic actions isolate a process from the
rest of the system, recovery involving restoring a proc-
ess to the initial state of an uncompleted atomic action
is part icularly simple. Reset procedures were intro-
duced to provide the user with explicit control over
recovery and to permit the passing of some informa-
tion from a rejected control sequence to its explicitly
requested alternative.

Acknowledgements

This work was immensely aided by my frequent
interact ions with members of the System Reliabi l i ty
Project at t l / e University of Newcast le upon Tyne.
Part icular thanks are due to B. Randell who stimulat-

ed my interest in this area and carefully crit iqued an
earl ier draft of this paper; and to P. M. Mell iar-Smith
whose many informative discussions of this subject
great ly enhanced my understanding of it.

References

1. Brinch Hansen, P. Operating System
Principles, Prentice Hall, Englewood Cliffs, N.J.,
U.S.A. 1973.

2. Clint, M. and Hoare, C. A. R. Program Proving:
Jumps and Functions, Acta Inf. 1 (1972) 214-
224.

3. Dahl, O-J., Myhnhaug, B. and Nygaard, K. The
S IMULA 67 Common Base Language, Norwe-
gian Computer Centre , Oslo, Publicat ion S-22
(1970) .

4. Dennis, J. B., and Van Horn, E. C. Programming
semantics for mul t ip rogrammed computat ions.
Comm. ACM 9, 3 (March 1966) 143-155.

5. Dijkstra, E. W. Co-operat ing Sequential Proc-
esses, in Programming Languages (Ed. F. Gen-
uys), Academic Press, New York, 1968.

6. Eswaren, K. P., Gray, J. N., Lorie, R. A., and
Traiger, I. L. On the notions of consistency and
predicate locks in a data base system. IBM Re-
search Repor t RJ1487, December 1974.

7. Gray, J. N., Lorie, R. A., Putzolu, G. R., and
Traiger, I. L. Granular i ty of locks and degrees
of consistency in a shared data base. IBM Re-
search Repor t RJ1654, September 1975.

8. Hoare, C. A. R. Monitors, an operat ing system
structuring concept . Comm: ACM 17, 10
(October 1974) 549-557.

9. Landin, P. A. A correspondence between AL-
G O L 60 and Church 's lambda-notat ion: part I.
Comm. ACM 8, 2 (February 1965) 89-101.

10. Randell , B. System structure for software fault
tolerance, Sigplan Notices 10, 6 (June 1975)
437-449.

11. Sussman, G. J. and McDermot t , D. V. Why
conniving is bet ter than planning. MIT A. I .Memo
No. 255A, April, 1972.

137

