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1. Atomic Actions 

Introduction 

It has long been realized that some way of re- 
stricting process interact ion is required if programs 
involving multiple processes are to be correctly imple- 
mented. Ideas similar to atomic actions have been 
suggested for this purpose as far back as Dijkstra 's 
famous paper [5]. Thus Dijkstra postulates that cer- 
tain primitive operations "are to be regarded as indivi- 
sible, non-interfering actions...". Brinch Hansen states 
[1], even more emphatically that "It is impossible to 
make meaningful statements about the effects of con- 
current  computat ions unless operations on common 
variables exclude one another in time. So, in the end, 
our understanding of concurrent  processes is based on 
our ability to execute their interactions strictly sequen- 
tially." An atomic action, as we use the term, is mere- 
ly a device for permitting the writer of a procedure to 
secure the same benefits of atomicity, i.e. indivisibili- 
ty, non-interference,  strict sequencing, as is enjoyed 
by the primitive operations. 

* This work was performed while the author was on a sabbati- 
cal at the University of Newcastle-upon-Tyne and was partially 
supported by a research grant from the Science Research Coun- 
cil of Great Britain. 

The important properties of atomic actions can be 
expressed in a number  of equivalent ways. We illus- 
trate three. 
1. An action is atomic if the process performing it is 

not aware of the existence of any other active 
process (can detect no spontaneous state change) 
and no other process is aware of the activity of 
this process (its state changes are concealed) dur- 
ing the time the process is performing the action. 

2. An action is atomic if the process performing it 
does not communicate with other processes while 
it is executing the action. 

3. Actions are atomic if they can be considered, so 
far as other processes are concerned, to be indivi- 
sible and instantaneous,  such that the effects on 
the system are as if they were interleaved as op- 
posed to concurrent.  

Background 

The current  widely known process structuring 
mechanisms do not provide the programmer with the 
ability to specify atomic actions. We review some of 
these below. 

Dijkstra [5] proposed semaphores as a mechanism 
by which a programmer could assure that a sequence 
of actions could be regarded as indivisible. The idea is 
to use semaphores to assure that code intended to be 
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indivisible is executed by only a single process at a 
time. A semaphore is used to guard the code. So long 
as process interactions can only occur in the "critical 
section" guarded by the semaphore, the code will 
function as an atomic (indivisible) action. 

When processes can interact by means of several 
common variables and while executing several differ- 
ent sections of code, mutual exclusion by means of a 
semaphore guarding a critical section no longer can 
assure atomicity. Consider first the case of a single 
common or shared variable v that is accessed by sever- 
al sections of code executed by different processes. 
One now needs a convention by which a semaphore 
can be associated with a shared variable so that all 
code accessing the variable is required to test the 
same semaphore. Such a semaphore has been called a 
lock[4]. Locks provide a way of assuring that only 
one process has access to a shared variable at a time. 

Brinch Hansen [1] introduced the idea of a critical 
region as a means of structuring the seizing and re- 
leasing of lock semaphores. Thus, to access a com- 
mon (shared) variable "v", one specifies a critical 
region 

1.(1) 
region v do S 

where only code in S is permitted access to "v".Fur-  
ther, if one process is in a critical region associated 
with shared variable "v", all other processes are ex- 
cluded from regions associated with "v". 

Problems arise for critical regions as soon as one 
is interested in accessing more than one variable. Not 
only is deadlock a potential problem but one may have 
difficulty assuring that the critical regions are atomic. 
Consider the code fragment below: 

1.(2) 
region v do 

region w do Sl; 

t * 

region w do $2; 
end; 

The outer critical region (i.e. for "v")  is no longer 
atomic. A second process can examine "w" at ( t )  and 
change "w" so that $2 sees the change, thus commu- 
nicating with the process in "region v" and destroying 
the atomic nature of the region. 

Such code sequences can be transformed, of 
course, into ones in which the variables are held for 
the duration of the outer region and these will be at- 
omic. However, subtle cases can arise that require 

much more knowledge and care if atomicity is to be 
preserved. Consider the skeletal program of 1.(3). 

1.(3) 
b:procedure; 

region w do 
begin; 

a; 

"t • 

a; 
end; 

end b; 

a:procedure; 
region v do 

s; 
end a; 

Unless the writer of procedure "b" is fully aware 
of the code in procedure "a" (an unfortunate require- 
ment, to say the least) and seizes "v" as well as "w", 
then, as shown in 1.(3), the procedure "b" will not be 
atomic since communication can occur at ( t ) .  

A way of assuring that some actions can be guar- 
anteed to be atomic is to make use of monitors as 
expounded by Brinch Hansen [1] and Hoare [8]. A 
monitor is similar to an instance of a SIMULA class 
[3], i.e. it is a data object that possesses not only vari- 
able components  but also procedure components.  
Then additional constraints are placed on the use of 
these components  in a multiprocessing environment.  
These are, quoting [8] 
1. "only one program [process] at a time [can] suc- 

ceed in entering a monitor procedure.. ." 
2. "Procedures local to a monitor should not access 

any non-local variables other than those local to 
the same monitor." 

3. "these [local] variables of the monitor should be 
inaccessible from outside the monitor".  

These constraints assure that the monitor procedures 
are atomic. 

There are two problems with monitors. One, 
atomic actions involving more than one monitor must 
be implemented in an indirect way, perhaps by using 
monitors to realize semaphores. Two, the first const- 
raint on monitors, i.e. that only one process can be 
executing any of the collection of monitor procedures, 
is more restrictive than necessary. What is required, 
simply and directly, is that monitor procedures be 
atomic. 

Data base systems present many of the same prob- 
lems as operating systems. In some respects, however, 
the problems are even more severe. In particular, the 
set of records (shared variables) that are to be ac- 
cessed during a " t ransact ion" may be very hard to 
determine ahead of time. Nonetheless, users desire to 
be presented with a consistent view of the data, i.e. 
one in which each of them appears to be the sole user 
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of the system. It is for this reason that transactions 
possessing the attribute of being atomic were intro- 
duced by Eswaren et al [6]. A number of interesting 
properties of such transactions were established in [6] 
but the terminology used is data base oriented and no 
concrete notation is suggested. The next section pres- 
ents and motivates a notation, which will subsequently 
be augmented by a notation for process synchroniza- 
tion and recovery. 

Action Procedures 

What is needed is a facility by which the writer of 
a procedure can directly state his intention that a pro- 
cedure be atomic. We regard the procedure mecha- 
nism as the extension mechanism for operations. 
Therefore, any property that is possessed by a primi- 
tive operation should be expressible when a user pro- 
vides a procedure. In particular, it should be possible 
for a user to write a procedure that exactly reproduces 
the effect of any given operation. For this reason, it is 
essential that a mechanism be provided that permits 
the writing of atomic procedures. It is this line of rea- 
soning, along with considerations of system recovery, 
that led us, independent ly of [6], to the notion of 
atomic actions and action procedures. 

We suggest the following notation for action pro- 
cedures. 

1 .(4) 
<identifier > :action(< parameter-list >); 

<statement-list> 
end; 

The semantics of actions are the same as those of 
procedures except that actions are to be performed as 
atomic actions, i.e. they are to be indivisible, etc. It 
should be clear that the difficulties of 1.(3) can then 
be avoided by writing: 

1.(5) 

b: action; a: action; 
a; S; 

end; 

a; 

end; 

That "b" is an action assures that it is atomic regard- 
less of the procedures or actions it may call. The ef- 
fect of this is to shift the responsibility for resource 
acquisition and release to the implementor of actions 
rather than being the responsibility of the programmer 
using actions. 

The shift of resource acquisition and release from 
user to implementation is simultaneously a great re- 
sponsibility and a great opportunity. The implementa- 
tion must now assure that deadlock does not occur (or 
can be overcome) while maximizing the amount  of 
concurrency. The opportunity arises because the im- 
plementation is no longer constrained by explicit direc- 
tions from the user. The user benefits enormously by 
having this entire messy area removed from his con- 
cern, thus enabling him to concentrate on the remain- 
ing program logic. 

It should be clear that resources that can only be 
referenced by a single process require no special pro- 
tection in order to assure that actions are atomic. This 
observation suggests that we syntactically distinguish 
shared and private resources. Doing this greatly eases 
the implementat ion burden by identifying those varia- 
bles for which there is contention,  i.e. the shared 
variables. Brinch Hansen [1] has previously made this 
suggestion though coupled with critical regions. By 
declaring variables as shared or private, the implemen- 
tation problems for atomic actions should be compara- 
ble to those for critical regions. 

The shared (or private) attribute applies to an 
object as a whole and not to its separate components.  
Local variables of a procedure are, of course, always 
private. To enforce that private objects not be accessi- 
ble to other processes, we must insist that references 
to private objects not be assigned to shared objects. Of 
course, references to shared objects can be assigned to 
private objects. They would not otherwise be accessi- 
ble. 

The shared/private attribute is useful in other 
ways as well. First, it serves as valuable documenta- 
tion, identifying the variables that are potential com- 
municat ion links between processes. Second, it is 
useful in memory management .  One can garbage 
collect private resources that are no longer accessible 
by their associated process. One need not examine all 
processes in the system looking for additional refer- 
ences since none can exist. Further,  when a process 
terminates, all its private resources can be reclaimed. 

Implementation Issues 

There are a number  of ways that atomic actions 
might be realized. A particularly simple one in a multi- 
programming system is to execute an action with inter- 
rupts disabled. That is, no interrupts are taken and the 
action retains control of the system until  it completes. 
In effect, it seizes all system resources during its 
execution. This strategem exploits the property that 
actions can be interleaved, i.e. concurrent  processing 
in which several processes execute simultaneously is 
not required in order for an action to complete. 
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In a multiprocessor system, if we wish to exploit 
resources efficiently, then it is important to attempt to 
maximize concurrency. This requires that only re- 
sources actually needed by an action during its execu- 
tion be acquired. Other processes wishing to use these 
resources must wait for them to be released. 

Eswaren et al [6] has identified the pattern of 
resource acquisition and release required to support 
atomic actions. Such a pattern is called two phased. 
It arises as follows. As a process executing an atomic 
action proceeds, it acquires the shared resources it 
needs. This is called the "growing phase". The set of 
resources held is constantly increasing since a process 
must not release any resources so long as there may 
be additional resources that it will need, [See 1.(3)] 
Once any resource is released, no others may be ac- 
quired and the set of held resources is constantly de- 
creasing. This is called the "shrinking phase". The 
conceptual "instant  of t ime" ta at which the action 
occurs can be regarded as the time at which the first 
resource is released. It is established in [6] that this 
discipline of resource acquisition and release guaran- 
tees that actions have a serial schedule, i.e. their ef- 
fects are as if they are interleaved. Figure 1 illus- 
trates this strategem. 
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Resource acquisition and release as a 
function of time for atomic actions. 

Figure 1 

It is possible to refine this strategy. Observe that 
resources that are merely examined by an action need 
not be concealed from other processes. It is sufficient 
if other processes are preveffted from changing these 
resources. Acquisition of resources such that other 
processes can examine but not change them is called 
"locking in the shared mode" [7]. Resources that are 

updated by an action must, of course, have these up- 
dates concealed from other processes. Thus, when 
these resources are acquired, no other process must be 
permitted to examine them. Such resource acquisition 
is called "locking in the exclusive mode" [7]. Both 
forms of locking must be two phased with the same ta 
[6,7]. 

The resource acquisition and release strategy de- 
scribed above does not constitute a resource manage- 
ment algorithm. A user cannot determine whether he 
executes alone or concurrently. How resource conten- 
tion is handled if concurrent  execution is to be 
achieved is not stated. Nor have we described a me- 
thod for coping with deadlock or indefinite postpone- 
ment. The analysis above has merely provided the 
framework in which a resource management algorithm 
must operate. 

2. Process Synchronization 

Synchronization using Actions 

The sufficiency of atomic actions to provide syn- 
chronization can be demonstrated by presenting an 
implementat ion of semaphores in terms of atomic 
actions. Since semaphores are capable of realizing 
critical regions, conditional critical regions, and moni- 
tors, there can be no doubts about the functional ade- 
quacy of atomic actions for providing synchronization. 

We provide semaphores by means of a SIMULA 
like class [3], the component  procedures of which 
either are or contain action procedures. The sema- 
phore class is defined in 2. (1). 

The code for "V" needs no particular explanation. 
It is an action procedure and hence performs its ef- 
fects as an atomic operation. The code for "P" is 
somewhat more complicated. First, "P" is not itself an 
atomic action. Rather it loops continuously, the body 
of the loop being atomic but each cycle of the loop 
providing an opportunity for changes to be made to 
"sem". Within the action body, "sem" is tested. If 
found to be greater than zero, the continuously testing 
loop is terminated with "sem" decremented by one. 
The loop termination is accomplished by calling the 
escape procedure "proceed". This construct is a varia- 
tion of the "label" procedures of Landin [9] and Clint 
and Hoare [2]. When an escape procedure terminates, 
it returns control to the caller of its lexically enclosing 
procedure. Thus, when "proceed" terminates, control 
returns to the caller of "P". 

There are two difficulties with this semaphore 
class definition, in particular with the body of P. 
1. The repeated testing of "sere" constitutes busy 

waiting, consuming real processor time. 
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2.(1) 
semaphore :class; 

sem:integer initial(0) 
v: action; 

sem := sem+l; 
return; 
end; 

P:procednre; 
proceed:escape; t 

return; 
end proceed; 

repeat( 
action; $ 

if sem _> 0 then 
begin; 

sem := sem- 1; 
proceed; 
end; 

end;) 
end P; 

end semaphore; 

$ An unnamed action procedure is written here where it is 
to be executed, in the same way as a begin block. 

t An escape procedure named "proceed", not an "escape" 
statement. See the text. 

2. If several processes are testing the same sema- 
phore, a race exists and there is no guarantee that 
some processes will not be subjected to indefinite 
delay. This is so because no scheduling policy is 
provided. 

Busy waiting has yet a third difficulty if we wish 
to provide synchronization within an atomic action. 
Notice that the busy waiting in P involves time slots in 
which "sem" is accessible to other processes because 
the "wait" loop consists of a succession of atomic 
actions rather than being embedded in one large ac- 
tion. In a single atomic action the variables within the 
action, once examined, cannot  be changed by other 
processes. Thus, busy waiting within a single action 
would be in vain. 

It might be argued that, as with the procedure P, 
one can always provide for the busy waiting to involve 
many atomic actions, with other processes thus capa- 
ble of changing the tested variables. This is extremely 
difficult to arrange, however. Let us suppose that 
"A" is an action procedure, that "B" is an an ordinary 
procedure, and that "B" uses semaphores. So far as 
"B" is concerned,  such use of semaphores should 
result in a workable program. If, however, "B" is 
called from "A",  it becomes part of an atomic action, 
and hence, so does the busy waiting in "B". Now, 
however, the busy waiting will never detect changes in 
"sem" and the program will loop forever. If "sem" is 
permitted to change, then a communication link has 

been established between the process executing A and 
B and the process changing "sem", thus destroying the 
atomic nature of action procedures. 

The Await Statement 

The problem with permitting "sem" to change is 
the fear that communicat ion will be established with a 
process inside an action procedure. But if such a 
process does not remember that it has seen previous 
values for "sem", i.e. if there is no way for it to sub- 
sequently determine whether the test was satisfied the 
first time or only after many repetitions, then we can 
take a different view. This view is that an action pro- 
cedure "A" did not commence its execution until after 
"sem" had changed. 

What we need in order to realize this view in 
which the entire action is delayed until the test can be 
satisfied on its first execution, is a mechanism that 
informs the system that this is our intent and permits 
the system to enforce the required constraints. For 
this purpose, the await statement is introduced. The 
intent of await is similar to that suggested for it in 
[1,8], but the description of it is different in order to 
maintain the integrity of atomic actions. 

The await statement has the following syntax: 

2 . ( 2 )  
await(<boolean expr>) then <procedure> 

Following our view that all executable constructs 
should be describable as some form of procedure, we 
produce 2.(3) as the semantics of the await statement. 

2.(3) 
await:action(test:boolean function, body:procedure); 
~t delay(atomic action until prescience 

tells us that "test" is true, or that 
it escapes, then immediately execute 
the following) 
if test then 

begin; 
body; 
return; 
end; 

else error; t 
end await; 

t "error" might be, for example, an escape procedure. 

It is, of course, true that such a procedure cot/ld 
not be written which is why await must be primitive. 
The "delay" at (:~) represents a bit of magic that 
cannot be expressed otherwise. It must be guaranteed 
that no subsequent testing on the part of a process can 
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determine  how many times the " tes t"  expression is 
executed. In order  to assure this, it is required that 
" tes t"  have no side effects.  This prevents the reten- 
tion of any state change other than the result of the 
expression,  which will be true when control  f inally 
passes to the then clause. Notice that " tes t"  is evaluat-  
ed in the action procedure  with "body" .  This assures 
that there is no possibility of the variables in " tes t"  
changing between the evaluat ion of " tes t"  and the 
execution of "body"  and hence guarantees that " tes t"  
remains true until (or unless) "body"  changes those 
variables.  When await is itself executed within an 
action procedure,  the evaluation of " tes t"  ensures that  
the variables upon which " tes t"  depends can no longer 
be changed,  except  by the process executing this 
action. Two awaits, one with " tes t"  and the other with 
"~test"  as below: 

2.(4)  
action; 

await test then S1; 

t await ~test then $2; 

end; 

in which both are within the same action, will result in 
the process executing this action being indefinitely 
delayed at ( t ) ,  provided the process itself did not 
change the variables of " tes t" .  Of course, if the vari- 
ables of " test"  cannot be changed by some other proc- 
ess, then the process executing 2.(4)  cannot  complete.  
Such situations can never be completely el iminated 
without  drast ical ly reducing the power of the lan- 
guage. This is true whether  or not await is provided.  
One can, in fact  regard endless looping or recursion as 
instances of the same problem. 

Implementation lssues 

The preceding section introduced await statements 
without  placing any constraints  on the form of the 
boolean expression that  was used for synchronization. 
To reduce implementat ion problems, it may be desira- 
ble to restrict  the boolean expression. 

Whenever  an await expression is not satisfied im- 
mediately,  it is necessary to suspend the executing 
process and place it on a queue of waiting processes.  
Many strategies for this are available, part icularly if 
we are not concerned with .whether our waiting proc- 
esses resume as quickly as possible. However ,  it seems 
desirable for  the implementa t ion to a t tempt  re- 
execution of an await expression whenever  one of its 
variables changes. One would like, therefore,  to iden- 

tify those variables that might cause the resumption of 
some waiting process. 

One could interpretively test some indicator  asso- 
ciated with every "shared variable to determine whether  
a process waits on this variable.  However,  one can 
greatly reduce such in terpre ta t ion  while enhancing 
program readabil i ty  if variables used for synchroniza- 
tion are explicitly designated. Thus, we suggest that at 
least one of the variables in an await expression be 
designated as a synchronizing variable,  i.e. be declared 
with the synchronizing attr ibute.  Our  implementat ion 
problem is then confined to synchronizing variables.  
Only synchronizing variables need be permit ted  to 
change during the repea ted  evaluat ions of the await 
expression,  and only the updat ing of synchronizing 
variables need result  in in terpre ta t ion to discover 
whether  waiting processes should be resumed. With 
respect  to acquiring and releasing resources,  only 
synchronizing variables might ever be acquired and 
released several times by an atomic action, and then 
only during the repeated  evaluations of the first await 
expression in which they occur. 

Addi t ional  restrictions might be required in terms 
of the number of variables and the operat ions permit-  
ted upon them in order  to reduce implementat ion cost 
and improve efficiency. The most restrictive require- 
ment  would be for  each await expression to consist 
solely of a single synchronizing boolean variable. Less 
severe restrictions should also be feasible. 

One important  feature  of the await s tatement  in 
conjunct ion with action procedures  is that,  unlike the 
case for monitors and condit ional  critical regions, the 
concepts do not require the exposure of an underlying 
implementat ion in order  for them to be understood.  
Thus, no explicit mention (at the conceptual  level) of 
process queues is required,  though obviously, an im- 
p lementa t ion  will exploit  queues and will require a 
scheduling strategy. Further ,  one need not be con- 
cerned with maintaining invariants at the point where 
an await s tatement  occurs. Those parts that have be- 
come temporar i ly  invalid because of updates  preceding 
an await are exactly those parts of the system state 
that  are not accessible to other  processes.  The compo- 
nents available to other  processes,  since they are un- 
changed, still satisfy their required invariants. 

An Example:Buffers 

Buffering is a common technique for optimizing 
the performance of paral lel  processes of the producer-  
consumer variety. While a consumer cannot  consume 
what a producer  has not yet  produced,  a buffer per- 
mits a p roducer  to " race  ahead"  of the consumer,  
producing results that  are retained in the buffer for 
subsequent consumption. Thus, in addition, buffers 
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reduce the possibility that a consumer will be delayed 
by waiting for a result from a producer. 

We wish to provide buffers by means of actions 
and await statements.  Our first a t tempt will be to 
modify slightly previous solutions in terms of condi- 
tional critical regions or monitors. This is shown in 
2.(5). 

2.(5) 
buffer:class shared; 

frame:array(0:N-1) of T; 
count:integer initial(0) synchronizing; 
head:integer initial(0); 
send:action(x:T); 

await(count < N-l) then 
begin; 

frame(headncount) := x; f 
count := count+ 1; 
end; 

end send; 
receive:action(y:T); 

await(count > O) then 
begin; 

y := frame(head); 
head := head. 1; f 
count := count-l; 
end; 

end receive; 
end buffer; 

t . is addition modulo N. 

This solution is adequate  when the use of the 
buffers occurs outside of all atomic actions. Unfortu- 
nately, a problem arises when "send"  or " rece ive"  are 
used within atomic actions. Consider " rece ive" .  
When a process P executes " rece ive"  in an atomic 
action, the changes it makes to "head"  and "count"  
cannot be seen by other processes. Hence, these proc- 
esses cannot execute  " send"  (or " r ece ive" ) ,  and in 
particular, cannot refill the buffer,  until P completes 

its atomic action. 

Thus, only as many messages can be received in 
an atomic action as are in the buffer at the time that 
the first " rece ive"  is executed. This is highly unfortu- 
nate as it introduces a large measure of time depend- 
ence, and hence, uncertainty. One would like to ex- 
ploit the full potential of the buffer, i.e. all its frames, 
whether  the buffer  is used outside of or within an 
atomic action. 

Another  pitfall must be avoided. In an atomic 
action, it should not be possible tO receive more mes- 
sages than can be contained at one time in the buffer. 
Otherwise,  we will have established communicat ion 
into the atomic action. The desired solution allows the 

maximum flexibility in sending and receiving messages 

consistent with the constraints imposed by the atomici- 
ty of actions of the communicat ing processes. The 
class defined in 2.(6) provides precisely that. 

2.(6) 
buffer:class shared; 

frame:array(O:N-1) of T; 
empty:array(O:N-1) of boolean 

initial(true) synchronizing; 
head:integer initial(O); 
tail:integer initial(O); 
send:action(x:T); 

await(empty(tail)) then 
begin; 

frame(tail) := x; 
empty(tail) := false; 
tail := tail. 1; f 
end; 

end send; 
receive:action(y:T); 

await(- empty(head) ) then 
begin; 

y := frame(head); 
empty(head) := true; 
head := headta 1; f 
end; 

end receive; 
end buffer; 

t . is addition modulo N. 

Each buffer  frame is only accessed if it is actually 
needed and the control  information governing the 
buffer  is distributed as separate information for each 
frame. Further,  importantly, the pointers "head"  and 
" ta i l"  are distributed to consumer ( " r ece ive" )  and 
producer  ( " send" ) ,  respectively.  This distribution of 
control information can be readily seen by examining 
Figure 2 below which illustrates the relations between 
the various components  of the buffer as implemented 

in 2.(6) .  

tail = 2 • 

head = 6 • 

frame 
'1 / z i g / ~ /  

/ / / / / / / /  
/ / / / / / / /  
I r~ rJ rJrA rJ rAM 

The bounded (circular) buffer described by the program 
of 2.(6). The shaded elements of "frame" contain data. 

Figure 2 
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Note that once a frame has been accessed, it can- 
not be reused until the action is complete (except by 
the action itself). The "send" and "receive" proce- 
dures are almost completely symmetric, and hence, the 
flexibility provided to receivers is also provided to 
senders. Thus, merely because a buffer is full (or al- 
most so) when the first send is issued within an action 
does not prevent it from ultimately sending as many 
messages as there are buffer frames. Other processes 
can continue to read messages deposited in the buffer 
by prior actions, making those frames ultimately avail- 
able to the sending action. 

3. System Recovery 

A Unit of Recovery 

By system recovery we mean the undoing of er- 
rors as opposed to their correction. This is usually 
thought of as consisting of two phases: 
1. the rolling back of the system to a previous state, 

assumed to be valid, by undoing some set of ac- 
tions, presumably including the erroneous ones. 

2. the re-performance of the actions undone in 1. that 
were not (known to be) erroneous. 

An error is usually associated with or detected in 
some process while recovery to a "checkpointed" state 
may involve many other processes. Thus, step 2. is 
needed so that correct actions are not lost. It should 
be clear that with a sufficiently comprehensive system 
log, such system recovery is always possible, though at 
rather great expense, so long as errors have not es- 
caped to the "outside world". 

One need not back up the entire system to provide 
a method of undoing errors. In an appropriately struc- 
tured system, in which a programmer identifies the 
units of recovery, it becomes possible to restrict the 
undoing of errors to the process (or unit) in which 
they occurred. A mechanism for so structuring systems 
has been introduced by Randell  [10] who calls this 
unit a recovery block. 

The idea of a recovery block, in so far as undoing 
errors is concerned, is to isolate the process executing 
it from other processes. Randell  states[10] that 
"communication,  whether it involves explicit message 
passing or merely reference to common variables,, 
would destroy the value of the...recovery block, and 
hence must be prohibited." This restriction assures 
that recovery blocks are, in fact, atomic. 

By preventing other processes from becoming 
dependent  upon the effects of an atomic action until 
the action is complete, only the process executing the 
action is affected by errors in the action. Hence, only 
this process needs to be restored to a previous state. 
And restoring this process involves restoring to a pre- 

vious state only that part of the system that is modi- 
fied by this process during the execution of the atomic 
action. It is unnecessary to re-perform actions of other 
processes since none of these were undone. 

Gray et al [7] point out that a somewhat less re- 
strictive form of " t ransact ion" than atomic transac- 
tions also possesses this attribute of being independ- 
ently recoverable.  These " t ransact ions" ,  called 
"degree 2 transactions" (atomic "transact ions" are 
degree 3) only conceal all changes until completion. 
Atomic actions not only prevent this communication 
out of an action but also prevent communication from 
other actions into an atomic action. Being subject to 
this weaker restriction, degree 2 transactions do not 
necessarily, as a result, possess a serial schedule nor 
are their effects reproducible if they are re-executed. 

Recovery Bookkeeping 

In order to permit atomic actions to be recovera- 
ble, their implementation must be such that 
1. updated resources, i.e. those locked in the exclu- 

sive mode, are not released until the action is 
completed. Once a modified resource is released, 
independent  recovery can no longer be assured as 
another process may examine  the resource and 
hence become dependent  upon it. 

2. the initial states of all resources modified by the 
action can be reconstructed. This usually involves 
maintaining a time ordered log of update opera- 
tions on which overwritten information is recorded 
together with its location. 

In [10], recovery is realized by means of a mecha- 
nism called a "recursive cache". Rather than record- 
ing all modifications and then undoing them in reverse 
time order, only the first change in any location is 
recorded. All modifications to the system state must 
first be checked, interpretively at run time, to deter- 
mine if a previous change has already been recorded. 
This means, of course, that only the starting state of a 
recovery block can be restored, and not intermediate 
ones, but this is all that is required. 

A "recursive cache" is but one of a number  of 
methods for providing recovery. A compiler could, in 
a large number  of cases, identify updates that do not 
represent initial changes in a recoverable atomic ac- 
tion and permit these updates to run without addition- 
al interpretive overhead. Updates that might represent 
initial changes in an atomic action could be logged. 
One might, as with the "recursive cache", try to elimi- 
nate from the log all changes after the first one, but 
there is no need to do so. Further,  strategies that are 
only partially successful in eliminating redundant  log 
entries are also possible. One might employ, for ex- 
ample, a small associative store with recently logged 
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i tems and el iminate addi t ional  potent ia l  log entries 
a l ready in this associative memory.  This is quite simi- 
lar to dynamic address translat ion in a virtual memory.  
These recovery strategies all need to be evaluated  
carefully. 

Reset Procedures 

Recovery facilities are, in effect,  means of provid- 
ing backtracking.  Such backtracking is usually present-  
ed at the programming language interface in a more or 
less implicit  guise, e.g. recovery blocks,  backt rack  
programming,  etc. There  are important  advantages to 
explicit  invocation of recovery facilities, part icularly if 
the abil i ty to communica te  informat ion from the 
"fa i led"  program path to al ternative ones is desired.  
What  we introduce is just such a feature,  called a 
reset procedure.  

A reset procedure  derives its effect  from its lexical 
context in much the same way as an escape procedure,  
previously used in 2.(1)  and descr ibed in [2,9]. In 
addit ion to the effects of an escape, a reset procedure  
also undoes  all changes produced  by code executed  
since its enclosing procedure  was invoked. We require 
that  this enclosing procedure  be an action procedure  
so as to isolate the recovery of the process executing 
it from other processes.  An action procedure  then 
becomes the unit of recovery.  Consider  the skeletal 
program of 3. (1).  

3.(i) 
x: action; 

y:reset(a); 

end y; 
z:procedure; 

b: local variable; 

t y(b); 
end z; 

$ z; 

end x; 

We assume that the call (~.) to procedure  "z"  is 
executed in action "x".  Both "x"  and "z"  modify the 
process state by means of, e.g. updat ing variables 
global to "x".  However ,  "z"  encounters  some diffi- 
culty it cannot  cope with and realizes that  some of the 
changes made  have been erroneous.  It, therefore ,  
calls "y"  at ( t ) ,  passing some information via argu- 
ment  "b" .  When "y"  is called, all changes to variables 
global to "x" are erased and the local variables of "x"  

are re-initialized. Only those changes produced by 
"y"  will be detectable  subsequently. When "y"  termi- 
nates, it returns control  to the caller of "x",  exactly as 
if "y"  had been an escape procedure.  

We should offer a word of caution concerning the 
argument(s)  to a reset procedure.  If an argument is a 
variable passed by reference,  the reset procedure  will 
not see its value at the moment  of call but ra ther  its 
value after recovery,  i.e. the value the variable had 
when the enclosing action was entered.  Passing argu- 
ments by value does not, of course,  have this potential  
confusion. 

An Example:Recovery Blocks 

We illustrate the use of reset procedures  by pro- 
gramming an implicit  recovery mechanism,  i.e. 
Randel l ' s  recovery blocks [10]. Basically, a recovery 
block is a control  structure that consists of two main 
components .  
1. an "accep tance  " tes t "  that  must  be satisfied on 

exit from the recovery block, i.e. it is a boolean 
expression that must evaluate to true. 

2. a set of a l ternat ive bodies that  are executed to 
produce the desired effects.  The first al ternative 
body is executed and the acceptance  test evaluat-  
ed. If true, the recovery block is complete .  If 
false, recovery takes place, returning the block to 
its initial state after  which the next a l ternat ive 
body is executed,  etc. 

A syntax for recovery blocks is: 

3.(2) 
ensure <boolean expr> 

by <procedure> 
{else by <procedure>} * 
else error; 
end; 

The procedure  of 3 .(3)  provides the recovery 
semantics required of a recovery block. The resetting 
in "ensure"  prior  to the execution of the first al terna- 
tive can be avoided if the invocation of " r e c o v e r ( l ) "  
is replaced by most of the body of " recover" .  This 
results in duplicate  code. Since there are no effects to 
be undone at " r e c o v e r ( l ) " ,  little if any cost  is in- 
volved in this initial resetting. 

Many other  appl icat ions  should exist for  reset 
procedure ,  including some in which information of a 
more essential  nature  than i l lustrated for recovery 
blocks is passed from the re jected control  path to its 
a l ternat ive.  Sussman and McDermot t  [11] present  a 
cogent  argument  for this, though advocat ing a very 
different  mechanism for accomplishing it. 
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3.(3)  

ensure:action(accept:boolean function, 
alternative:array of procedure); 
recover: reset(j:integer); 

alternative(j); 
if accept then return; 
else 

if j < highbound(alternative)t then 
recover(j+ 1); 

else error; 
end recover; 

recover(1 ) ; 
end ensure; 

t highbound is a function that returns the upper bound of 
a vector, i.e. its maximum index. 

$ error might designate an escape or a reset procedure. 

5. Summary 

Atomic actions have been explored as a means of 
structuring multiple process programs. Action proce-  
dures were suggested as a way of introducing atomic 
actions into a programming interface.  Synchronization 
was achieved by means of the await statement,  without 
exposing any underlying queueing or making explicit 
the acquisi t ion and release of resources.  Together ,  
action procedures  and the await statement make multi- 
ple process programming very little more difficult than 
sequential programming. 

Because atomic actions isolate a process from the 
rest of the system, recovery involving restoring a proc- 
ess to the initial state of an uncompleted atomic action 
is part icularly simple. Reset procedures  were intro- 
duced to provide the user with explicit  control  over 
recovery and to permit  the passing of some informa- 
tion from a rejected control sequence to its explicitly 
requested alternative. 
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