
as
s;
nd
of

be
of
ata
y
nt
ay
l-
y
eir
n

be
en
if-
be

to

rol
ss
a
ns
e-
e-

nd
nd
e or
o-

vi-

ut
e

ge
n
lti-

Certificate-based Access Control for Widely Distributed Resources
Mary Thompson, William Johnston, Srilekha Mudumbai, Gary Hoo,

Keith Jackson, Abdelilah Essiari

Information and Computing Sciences Division
Ernest Orlando Lawrence Berkeley National Laboratory

Berkeley, CA, 94720
pkidev@george.lbl.gov
Abstract

We have implemented and deployed an access control
mechanism that uses digitally-signed certificates to
define and enforce an access policy for a set of distrib-
uted resources that have multiple, independent and geo-
graphically dispersed stakeholders. The stakeholders
assert their access requirements in use-condition certifi-
cates and designate those trusted to attest to the corre-
sponding user attributes. Users are identified by X.509
identity certificates. During a request to use a resource,
a policy engine collects all the relevant certificates and
decides if the user satisfies all the requirements. This
paper describes the model, architecture and implemen-
tation of this system. It also includes some preliminary
performance measurements and our plans for future
development of the system.

1. Motivation: Distributed Computing
Environments

In distributed computing environments such as research
collaborations spanning several institutions, there may
be independent and geographically dispersed individu-
als with authority to control access to the resources [18].
We wish to provide an automated system to allow these
stakeholdersto assert their authority over a resource in a
flexible manner, consistent with the scope of their
authority. Our immediate motivation is to enable shar-
ing over open networks of valued resources within the
scientific community generally, and for distributed col-
laboratories in the DOE2000 project [8] in particular.

The Department of Energy (DOE) supports a number of
collaborative research environments in which people
from universities and companies work with DOE
national laboratory personnel and resources. The Lab

resources consist of large scientific instruments such
electron microscopes or high-energy light source
supercomputers or other high-end compute servers; a
large-scale storage systems. Researchers from any
the groups may contribute software and data to
shared by other members of the group. The owners
software and data want to be able to securely store d
or use their software on hardware that is owned b
another entity. The owners of hardware resources wa
to be able to control their uses. These stakeholders m
want to share with some, but not all members of the co
laboratory. For example, commercial members ma
want to use common compute hardware, but share th
data and results only with other members of their ow
organization.

Such an environment requires that the stakeholders
able to enforce access policy on their resources ev
when those resources are physically controlled by a d
ferent administrative domain. Each stakeholder must
willing to trust that the resource server will enforce
access control, but the stakeholder should be able
flexibly specify access requirements for its resources.

Traditionally, stakeholders have relied on access cont
lists (ACLs), stored on the resource server, to expre
access policy. However, such ACLs typically require
central administrator to make all changes, which mea
both that the administrator must be trusted by all stak
holders and that the administrator is potentially a bottl
neck to rapid updating of the policy. Also, ACLs usually
require the server domain to maintain accounts a
other administrative support for both stakeholders a
users. These problems are all exacerbated when som
all stakeholders and users are administratively and ge
graphically remote from the server.

Another problem that arises in distributed research en
ronments is that there may be multiple principals from
different administrative domains who need to have inp
to the access control policy for a single resource. Th
attempted execution of proprietary code (e.g., a lar
scientific modeling program) owned by a third party o
a remote supercomputer is an example of such a mu

This work is supported by the U. S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing
Research, Mathematical, Information and Computation
Sciences office (http://www.er.doe.gov/production/octr/mics),
under contract DE-AC03-76SF00098 with the University of
California. This document is report LBNL-42928

to
ers
be

p-
.

ib-
u-

n
ce
ts
e
of
of

en-
t of

tity
i-

ub-
i-

ing

-

he
en
an

tes
g,
-

ide
hat
he
on
-
o-
as
).
e

te
r-

ow
ces.
ply-controlled resource. The owner of the supercom-
puter may want to restrict the amount of run-time
allotted to a user, and the author of the code may want to
specify who may run the code. Getting permission to
run the code, therefore, requires satisfying two sepa-
rately administered policy requirements.

Multiple layers of management may wish to impose
independent restrictions on the use of a large scientific
instrument. For example, top-level administrators may
have general restrictions based on nationality or mem-
bership in an organization, safety officers may require
special training, and the principal investigator may have
his own set of requirements for the project which has
scheduled time on the instrument.

In these scenarios, the resource (data, instrument, com-
putational or storage capacity) has multiple stakeholders
and each stakeholder will impose conditions for access,
called use-conditions,on the resource. All of the use-
conditions must be met simultaneously in order to sat-
isfy the requirements for access. Further, it is common
that the principals in these scientific collaborations are
geographically distributed and multi-organizational.
Therefore, without reliable, widely deployed, and easily
administered access control mechanisms it will not be
feasible to administer a secure collaborative environ-
ment. The access control mechanism must allow secure,
distributed management of policy-based access to
resources and provide transparent access for authorized
users and strong exclusion of unauthorized users, in an
operating environment where stakeholders, users, and
system/resource administrators may never meet face to
face.

2. Goal: Policy-based Access Control

We want our access control mechanism to support, in a
computer-based working environment, the same sort of
distributed authority over resources that is used in non-
computer group endeavors. Each stakeholder should be
able to make its assertions (as it does now by signing a
policy statement) without reference to a mediator, and
especially without reference to a centralized system
administrator who must act on its behalf. The mecha-
nism must be dynamic and easily used by all concerned
– stakeholders and users – while maintaining strong
assurances. The solution should scale with the number
of stakeholders, resources and users.

Specifically, the access control mechanism should be
able to collect all of the relevant assertions (identity,
stakeholder use-conditions, and corresponding user
attributes) and make an unambiguous access decision
requiring an absolute minimum of centrally adminis-
tered configuration information. Once the policy-based

decision is made, the resource server should be able
ensure compliance both on the part of the intended us
and unauthorized parties. The mechanism should also
based on, and evolve with, emerging, commercially su
plied, public-key certificate infrastructure components

3. Approach: Certificate-based Distrib-
uted Security

Our approach to policy-based access control in a distr
uted environment is based on digitally signed doc
ments, or certificates, that convey identity,
authorization, and attributes. A digital signature ca
assert document validity without the physical presen
of the signer or physical possession of documen
signed in the author’s handwriting. The result is that th
digitally signed documents that provide the assertions
the stakeholders about a resource, or assertions
trusted authorities about attributes of a user, may be g
erated, represented, used, and verified independen
time or location.

Users are authenticated by presenting an X.509 iden
certificate [17] and proving that they know the assoc
ated private key. These certificates are issued bycertifi-
cate authorities (CA) that verify the connection between
a person or system component and possession of a p
lic key / private key pair. Stakeholders create and dig
tally sign use-condition certificates that define
conditions that must be satisfied by a user before be
given access to a resource.User attributesare asserted
by “authorities” that provide assured information as dig
itally signedattribute certificates[11]. Both use-condi-
tion and attribute certificates may be stored local to t
issuer as long as they can be provided by a server wh
they are needed to determine permissions during
access request.

Components that enable the use of these certifica
include reliable mechanisms for generating, distributin
and verifying the digitally signed documents; mecha
nisms that match use-conditions and attributes to dec
if access should be allowed; and access methods t
enforce policy for the specific resource based on t
access control decision. All of these mechanisms rely
public-key cryptography for digital signatures, a public
key infrastructure for certificate management and a pr
tocol for secure, authenticated communication, such
the Secure Sockets Layer protocol (SSL) ([25], [26]
(For a general introduction to public-key technology se
[12] or [24].)

A frequently asked question is how is the PKI-certifica
approach is better than the well established DCE/Ke
beros access control system. Kerberos and DCE all
remote users secure access to centralized resour

trol

e
e

the
d on
nts

ate

DN

Client Resource Server Fetch
Certificate

Cache
Manager

Internet

Certificate
Servers

Log
Server

Figure 1. Overview of Akenti Architecture

Akenti policy
engine
Access by users from multiple administration domains
can be addressed by establishing cross-realm trust. In
the DCE environment the policy about a set of resources
is defined by an ACL in the realm which controls the
resource. Only user identities and group memberships
are assigned by the other realms. Since the PKI
approach allows pieces of the access control policy to be
stored in distributed certificates, it enables distributed
stakeholders to more easily control their resources. It is
also our expectation that PKI identity certificates will
become more widespread than Kerberos identities since
many enterprises are beginning to use them for
employee identification.

4. Architecture and Implementation

We are implementing a certificate-based access con
system called Akenti [1], and initially deploying it in the
DOE2000 Diesel Combustion Collaboratory [7]. Figur
1 shows the overview of the Akenti Architecture. Th
heart of this system is theAkenti policy engine, which
gathers and verifies certificates and then evaluates
user’s right to access to the requested resource base
these certificates. Figure 1 shows the major compone
of the run-time architecture. Theclient requests an oper-
ation on the resource and presents an identity certific
for authorization. Theresource serverauthenticates the
Figure 2. A screen from the use-condition certificate generator

ur
he
It

y
de
a-
to

es
-
er.

s
An

r’s
-
e
a
or
n-

ce
ifi-
that
file
certificate and then asks the Akentipolicy enginefor an
access decision. Akenti checks with acache serverfor
possibly cached certificates and if that fails, searches
certificate directoriesacross the internet. Akenti also
logs all of its actions with alog server.Once Akenti has
all the necessary certificates, it returns its access control
decision to the resource server. The resource server then
acts on that decision to perform or deny the operation on
the resource on behalf of the client.

One other essential component of the Akenti infrastruc-
ture is the set of tools that generate certificates, query
the policy and display the run-time operation of the sys-
tem.

Generating and Managing Certificates

Akenti uses three types of persistent certificates: X.509
user identity certificates, use-condition certificates, and
attribute certificates. The identity certificates are gener-
ated and managed by certificate authorities, such as the
Netscape CA server, Entrust server or Verisign. These
CAs provide a Web interface that allows the creation or
revocation of certificates; a directory server (usually an
LDAP server) to provide the certificates for use by
applications; and Web browser to manage the certifi-
cates for the user. CAs typically support acertificate
revocation list (CRL) mechanism that can be queried

when an application needs to verify a certificate. O
implementation uses the Netscape CA, which was t
easiest to install and run in a research environment.
currently only checks with the directory server to verif
that a certificate has not been revoked. Some minor co
addition would be necessary to use a CA’s CRL mech
nism, rather than just relying on the directory server
provide only non-revoked certificates.

The format of the attribute and use-condition certificat
is defined by Akenti and consists of a list of ASCII key
word and value tuples which are signed by the issu
These values include a validity period and a uniqueID

for the certificate. We have written two Java application
to help the user generate and sign these certificates.
example of the use-condition certificate generato
interface for specifying a use-condition is shown in Fig
ure 2. These applications know how to query th
resource server and CA directory server to provide
menu of reasonable choices for the stakeholder
attribute issuer to use in creating a certificate. The ge
erators use a configuration file to find the resour
server and the user’s signing keys. The resulting cert
cates can be stored in directories chosen by the user
are accessible via a Web server, an LDAP server, a
system, or an on-line MSQL database.
Certificate Authority Attribute Authority Stakeholder

Attribute Generator Use-condition
Generator

Distinguished Name
Attribute, Value

Resource
Use conditions
Attribute Authorities

Distinguished Name
Public Key

Use-
condition
certificate

Attribute
certificateX.509

LDAP

Web server Database
server

File server

Figure 3. Certification Generation and Storage

el

y
e

Example 1. Use-condition Certificate

Example 2. Attribute Certificate

-----BEGIN TEXT CERTIFICATE-----
-----BEGIN TEXT-----
use-condition
UID "portnoy.lbl.gov#1bea61fe#Mon Feb 01 00:17:11 PST 1999"
notValidBefore 981215014732Z
notValidAfter 991215014732Z
issuerAndCA "/C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA" "/

C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=Mary R. Thompson-sa"
resource http://imglib.lbl.gov/AkentiDist
scope sub-tree
attribute "(o : Diesel Combustion Collaboratory OR group : distrib)"
enable access read,execute
attributeIssuerAndCA o "Diesel Combustion Collaboratory" X509 "/C=US/O=Diesel Combustion

Collaboratory/OU=SNL/CN=DieselCert.ca.sandia.gov" "/C=US/O=Diesel Combustion Collabo-
ratory/OU=SNL/CN=DieselCert.ca.sandia.gov"

attributeIssuerAndCA group "distrib" Attribute "/C=US/O=Lawrence Berkeley National Labora-
tory/OU=ICSD/CN=IDCG-CA" "/C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/
CN=Mary R. Thompson-sa"

subjectCA "/C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA"
subjectCA "/C=US/O=Diesel Combustion Collaboratory/OU=SNL/CN=DieselCert.ca.sandia.gov"
-----END TEXT-----
-----BEGIN SIGNATURE-----
ZbO6puCmJGMY8Yz39RQ6Mf9Hx21+lC34suSH6onZ8Ml4CHVW+UHqQx6qShMe8D743+HR

QPVDupsl
-----END SIGNATURE-----
-----END TEXT CERTIFICATE

-----BEGIN TEXT ATTRIBUTE CERTIFICATE-----
-----BEGIN TEXT-----
attribute-certificate
attribute group
value distrib
notValidBefore 981215014732Z
notValidAfter 991215014732Z
subject "/C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=Mary R. Thompson"

"/C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA"
issuer "/C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=Srilekha Mudumbai-

sa" "/C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA"
-----END TEXT-----
-----BEGIN SIGNATURE-----
LedD9aawMkhpmW2dzt+o10Qb0Eanen0qMnYyAGYWPNL6DzbVqBIBXFesze40jPN6WelbV

KL8SCP1Q/-----END SIGNATURE-----
-----END TEXT ATTRIBUTE CERTIFICATE-----
Figure 3 summarizes the different entities that create
certificates, the tools that they use and the servers that
manage the certificates. Not all types of certificate serv-
ers need to be available.

Let’s look at an example of a use-condition and attribute
certificate and what access they grant. The use-condition
certificate in Example 1 is for the resource referenced by
the name “http://imglib.lbl.gov/AkentiDist” and any
directories under it. It was issued by the entityMary R.
Thompson-sa; it allows read and execute access to the
resource. The user must either be a member of the orga-

nizationDiesel Combustion Collaboratory, as attested to
by presenting an identity certificate issued by the Dies
Lab CA, or be a member of the groupdistrib, as attested
to by Srilekha Mudumbai-sa, whose signature must
match the public one found in an ID certificate issued b
the LBNL CA. The user must have an identity certificat
issued by either the Diesel Lab CA or the LBNL CA.

The attribute certificate in Example 2 attests toMary R.
Thompsonbeing a member of the groupdistrib. Since it
has been issued and signed bySrilekha Mudumbai-sait
would satisfy the proceeding use-condition certificate.

s-
i-

of
nt

ve
ir
ly
ver
e-

be
may
eb

a
t.
he
ion

a
r
A

el
e-
ny
e-
r-

sed

di-
o a

ad
ust
e.
er

vi-
a
ht
on
rs
of

er
to
se

or
ply
that
on
Resource Server

Our model includes a resource server that interfaces to
resources on behalf of the client. It is responsible for
establishing a secure and authenticated connection
with the user. Our current applications use an SSL-
enabled Apache Web server ([2], [3]) and an Orbix
SSL-enabled Object Request Broker (ORB) [22]. The
SSL protocol is configured to require client side autho-
rization. In this mode mutual authentication is per-
formed and at the end of the handshake the server has
an authenticated X.509 identity certificate for the user,
which can be used to securely grant authorization to
the entity at the other end of the encrypted connection.

After authentication, the server calls the Akenti policy
engine with the DN of the user and the name of the
resource that is being requested. The policy engine
either returns “access denied” or a list of actions that
are allowed. The resource server must know how to
interpret and perform the named actions on behalf of
the client.

Akenti Policy Engine

The policy engine is a library module that finds all the
use-condition certificates that apply to a resource. It
verifies that each use-condition certificate has been
signed by a legitimate resource stakeholder and has not
expired. Then for each use-condition that must be satis-
fied, the policy engine searches for the attribute certifi-
cates that attest to the required values for the user.
Once all the use-conditions and attribute certificates are
gathered and verified, the policy engine evaluates what
actions, if any, the user is allowed to perform.

Since one of our goals is to avoid centralized access
policy information, we immediately face the problem
of where to look for use-condition certificates and how
to know that they have all been found. Our solution
introduces a minimalauthority file that is stored with
the resources. This file contains a list of servers which
supply identity and attribute certificates; the list of the
use-condition issuers (stakeholders); and where the
use-condition certificates are stored. In addition, there
is a root authority filethat contains the list of trusted
CAs, and their public keys, for the whole resource tree.

The Akenti policy engine searches each of the use-con-
dition certificate directories listed in the authority file.
It must find at least one use-condition certificate for
each stakeholder. If a stakeholder supplies no use-con-
dition certificate, Akenti denies all access to the
resource. Several assumptions underlie this behavior.
First, a stakeholder’s use-condition certificates for a
resource must all be stored in one place, so that if one
is found, they all are. Second, each stakeholder intends

to place a use-condition on the resource. (It is also po
sible to specify joint stakeholders, where a use-cond
tion from either one will suffice.) Third, it is better to
deny all access to a resource if the input from one
the stakeholders is missing, than to erroneously gra
access that the missing use-condition would ha
denied. Finally, that the stakeholders will store the
use-condition certificates in a secure and reliab
accessible place. One option is for the resource ser
to provide a secure LDAP server on which the stak
holders may store their certificates.

Naming the resources is another issue that needs to
addressed. Our model assumes that the resources
form a hierarchy, such as a file system or a tree of W
documents. This model can obviously be reduced to
single level for something like a scientific instrumen
Grouping resources into a hierarchy that reflects t
desired protection reduces the number of use-condit
certificates that must be issued. A use-condition has
scope of either local or sub-tree: Example 1, fo
instance, shows a sub-tree-scoped use-condition.
locally scoped use-condition only applies to the lev
named in the use-condition certificate; a subtre
scoped use-condition applies at that level and at a
level beneath it. The name of the resource in the us
condition certificate is typically the name used to refe
ence the resource. Hence, URLS are used for Web-
accessed resources, CORBA object names can be u
in the context of an ORB, etc.

There is one more non-obvious feature of use-con
tions. Some use-conditions grant general access t
resource, as specified by “enable access” either as the
only access or in conjunction with actions such as re
or write. If a use-condition specifies access, a user m
satisfy it before gaining any access to the resourc
This feature allows stakeholders to exercise veto pow
over any subtree of resources. In particular, we en
sion this feature being used at the top level of
resource hierarchy, where a global use-condition mig
require that any user of the resource meet a conditi
specified by a high level authority, e.g., that all use
must be member of some organization or group
organizations.

If a use-condition only grants actions, then any us
who satisfies it is granted those actions in addition
whatever other actions she may be allowed. One u
for such a certificate would be to grant “write” or
“modify” privileges to a small subset of people while a
larger group would be granted “read” access. F
example there could be three use-conditions that ap
to a resource: a subtree-scoped one at the root level
only grants access to everyone in the organizati

on
ed
ck
to
as
ly
se

on
ble
at
ed
ch

e
ve
e
e
ifi-
ess

ing
all

e-
e as
ate
on-
r-

s
f a
ic

-
-

LBNL; a second one at a local level that grants read per-
mission to everyone in a group “readers”, and a third
one at the local level that grants “modify” permissions
to a group “writers”. Thus the user’s identity certificate
would need to show her belonging to the organization
LBNL, and she would need an attribute certificate plac-
ing her in either the “readers” or “writers” group before
she would be allowed any access to the resource. If she
also has a certificate placing her in the other group, she
would get the additional access. Note that we use iden-
tity certificates in place of a separate attribute certificate
to attest to the user’s values for selected components of a
DN: organization, organizational unit and common
name.

All use-conditions must be evaluated before a user’s
access can be determined. All those that grant “access:
must be satisfied; any that assert negative conditions,
e.g., not from a proscribed country will take precedent
and deny access; any of the positive ones may add more
rights. It is certainly possible for multiple stakeholders
to impose contradictory use-conditions, which may
result in no access to the resource being granted. We
believe that this mirrors the way stakeholders wish to
impose control. The solution is for the stakeholders to
be able to easily see what the combined results of all the
use-conditions is, and to co-operate with the other stake-
holders to create a set of use-conditions that satisfies
everyone.

5. Implementation Refinements

Caching

Since Akenti’s access control decisions are all based
the contents of signed certificates that are distribut
across the network, an obvious performance bottlene
is the gathering of these certificates. One way
improve this performance is to make the searching
efficient as possible. We have done this by careful
choosing the parameters to the LDAP and databa
searches so as to maximize the amount of filtering
the server side and reduce the number of non-applica
certificates that are returned to Akenti. Certificates th
are stored in file systems or Web directories are nam
by a hash index of the search attributes. Akenti’s sear
is based on these hash names.

The other obvious way to minimize searching over th
network is to cache certificates locally once they ha
been found and verified. Since the Akenti policy engin
is a library module without any persistent memory, w
have implemented a cache server to store the cert
cates. In the case of the Web server used as an acc
control gateway, several processes may be check
access for the same set of resources in parallel and
talking to the same cache server. In our current impl
mentation, the cache server runs on the same machin
the resource server, but it could easily run on a separ
machine if desired. The cache manager caches use-c
dition certificates, identity certificates, and attribute ce
tificates.

In addition to static certificates, Akenti creates, sign
and caches a certificate containing the access rights o
user for a resource. This certificate is in effect a dynam
capability certificate. Capability certificates are espe
cially useful for a hierarchical collection of Web docu
Display dot for each step in the
access process

Display log message for each dot.

Display a line for each resource
accesed

Figure 4. Monitoring Applet

fig-
he
is
let
nt-
an
ra-
ir

ral
the
ay
d
on-
in
-
s
a-

ti/
if-
lec-
al
y
en
rol
in
he
n-

.
nd
to
)-

it
of

ur
e

ces,
be
in

s.
s.
d
f-
nd

h
ac-
ments. A Web browser often makes several independent
access requests for each logical document request, as
when a page includes images. Also, in hierarchical col-
lections of Web documents, related documents fre-
quently all inherit access permissions from the same
directory. Once the capability is cached, subsequent ref-
erences short-circuit most of the Akenti policy engine.

The validity period for a cached certificate needs to be
under the control of the stakeholders of the resource for
which the certificate is going to be used. Since the same
identity or attribute certificates may be used for several
resources, checking the validity of a certificate requires
two steps. When the certificate is first cached, the “not-
valid-before time” is set to the current time, and the
“not-valid-after time” is set to current time plus the
validity period corresponding to the current resource.
This value can be found in the authority file for the
resource or can be the default value for the resource tree.
If the cached certificate is going to be used to allow
access to a different resource, the “not-valid-before
time” stored with the cached certificate plus the validity
period for the desired resource must be less than the
present time. We make one exception to the above rule:
since capability certificates represent the sum total of
many different certificates, their lifetimes are kept very
short (currently 5 minutes).

Monitoring

In order to provide a meaningful service, access control
must be applied in such a way that the resources are pro-
tected as intended by the stakeholders. This involves
understanding the structure of the resources and how
they should be used, and developing a policy model that
will support the intended access control. Akenti pro-
vides several services which are intended to help the
stakeholder understand the policy implemented for the
resource. In our prototype these services are available to
anyone who has access to the resource tree. In a more
restrictive environment, they could be limited to stake-
holders of the specified resource.

First, a remote user can ask Akenti to statically display
all the authority files and use-condition certificates
applying to a resource. A stakeholder can use this facil-
ity to discover what use-conditions already apply, either
those inherited from a higher level in the resource hier-
archy or imposed by other stakeholders, before design-
ing a new one.

Second, the Akenti policy engine performs extensive
logging in order to provide dynamic information about
the its behavior. The logging uses an existing logging
library, NetLogger [27], that directs the logging mes-
sages to a log server and/or file or standard output

depending on how the resource server has been con
ured. Directing the messages to a log server allows t
information to be presented in real time to a user who
attempting to gain access. We have written a Java app
that graphically displays each step of the access-gra
ing process. (See Figure 4.) The log is also saved to
audit file on the resource server so that the administ
tors or stakeholders may monitor the use of the
resources.

6. Status

Over the past two years, we have implemented seve
Akenti-enabled servers. The prototype that has seen
most use is an Apache Web server with the SSLe
patches [3] and with Akenti replacing the standar
access control module. It is being used as an access c
trol gateway for a variety of Web-based resources with
the Diesel Combustion Collaboratory [7]. This is a pro
totype collaboratory that involves two independent CA
and a number of government and commercial organiz
tions scattered around the country. A single Aken
Apache Web server is used to control access to two d
ferent image and data archives and a Web-based e
tronic notebook developed by Oak Ridge Nation
Laboratory [14]. In these applications, the Akenti polic
engine is called both by the Apache Web server and th
again by the scripts that are used for fine-grained cont
of the resources. The Akenti policy engine is wrapped
a main program that is executed by scripts. Once t
user has an identity certificate and the correct crede
tials, the access control is almost transparent.

We have also implemented a prototype CORBA ORB
Minor changes were made to the client side to find a
present an identity certificate and to the server side
use one of the Object Management Group (OMG
defined interceptors to call the Akenti policy engine.

Although we are just starting to evaluate Akenti,
appears to provide the sort of distributed management
access policy by multiple stakeholders that was o
goal, while enforcing strong access control over th
resources. In the case of remote references to resour
the additional overhead of Akenti does not seem to
unreasonable. We have invested considerable effort
creating user-friendly interfaces for the stakeholder
Currently we are rewriting the certificate generator
This is due partly to the rapid evolution of Java, an
partly to our discovery that as we create policies for di
ferent sorts of resources and user populations, we fi
we need more flexibility and clarity in the certificate
generator interfaces.

When problems occur, the logging facility is now bot
complete enough and sufficiently accessible that a pr

s

t-
er-

d a
i-
m
ys-
les
ys-

-
the
e

the
on-
es

of
lly,
ti
an
cli-
y

es
he
te
es
e
8-
to
e-
ticed user can figure out what credential is missing,
expired, etc. Probably the biggest problem with the log-
ging information is that there can be too much of it, and
sorting out the real cause of the problem is sometimes
difficult. This is an area of ongoing development.

7. Vulnerabilities

The major vulnerability of the system derives from the
fact that while stakeholders and their repositories are
named in the authority file on the server, the use-condi-
tion and attribute certificates they depend on are main-
tained on distributed, “trusted” servers. If those
certificate servers are not secure, then certificates could
be deleted, resulting in an unintended access control
policy. The type of failure depends on the type of certifi-
cates that are missing. If none of a stakeholder’s use-
condition certificates is available there will be a com-
plete denial of access. If only some of a stakeholder’s
use-condition certificates are missing, the access could
be greater than it should be. And if an attribute certifi-
cate is missing, specific users may get more or less
access than they should.

The problem where a missing use-condition certificate
allows greater permission than desired, can be solved by
requiring the stakeholder to put all the use-conditions
into one certificate. If that certificate is missing all
access is denied. This constraint will produce more
complicated use-condition certificates which may make
the policy harder to understand.

The fact that a missing attribute certificate could permit
too much access was revealed when comparing Akenti
to KeyNote (see Section 9). The current use-conditions
allow negative constraints, e.g., not belonging to some
proscribed group. If that group certificate is missing, the
user may get access to a resource that should be denied.
To prevent this, use-conditions must always phrased in

terms of positive conditions, so that attribute certificate
will always increase access.

As we gain more operational experience, we will be be
ter able to assess the importance of each of these vuln
abilities and the trade-offs required to address them.

8. Performance Measurements

The performance of a system composed of a client an
remote server using Akenti access control is often dom
nated by factors that are not controllable by the syste
designer. Nevertheless, it is valuable to measure the s
tem performance in order to characterize the variab
and to optimize those that can be influenced by the s
tem.

Two variabilities arise from the fact that this is a distrib
uted system: the network transmission time between
client and server, and the network transmission tim
plus the server response time between Akenti and
certificate servers. Performance factors under loose c
trol by the stakeholder are the number of certificat
required to make an access decision and the volume
data that is passed between the client and server. Fina
there is the overhead directly attributable to Aken
which includes the time associated with establishing
SSL connection and encrypting the data between the
ent and server, and the time spent in the Akenti polic
engine gathering and verifying certificates.

The measurements in this paper are for file fetch
between a Java SSL-enabled client an Akenti/Apac
Web server. The client, server and all the certifica
servers are on a 100 Mb/s LAN. The document siz
varied between 1KB and 1MB in order to evaluate th
overhead of the SSL encryption. The SSL keys are 12
bit keys. The number of certificates that were required
permit access varied between a minimum of one us

No caching Caching

Akenti
(seconds)

SSL/network
(seconds)

Total
(seconds)

Akenti
(seconds)

SSL/ network
(seconds)

Total
(seconds)

Min-acc

1K 0.86 0.65 1.51 0.20 0.65 0.85

1M 0.90 1.75 2.65 0.22 2.02 2.34

Ave-acc

1K 2.26 0.73 2.96 0.115 0.646 0.762

1M 2.24 1.96 4.00 .188 1.77 1.96

Table 1: Average times to fetch a document from a Secure Akenti server.

r
ing
and

d
rd
ut
80
v-
nd
on-
r-
es
he
a

s is

o
the
m-
ro-
tch
n
of

he
a

is
fter
ec-
ith
ter

th
ns.
the

n-
nd
al-
n

condition certificate and two identity certificates and a
more average case that required two use-condition cer-
tificates, one attribute certificate, and four identity certif-
icates. We also took measurements with and without
Akenti server caching enabled.

On the server side, Akenti does extensive logging of
each logical step in the policy engine. This measurement
excludes the server side time spent in the Apache server
and SSL encryption. The times in Table 1 are the times
in the Akenti policy engine (Akenti), the total socket
read time the client saw (Total) and the difference
between the two which can mostly be accounted for by
SSL overhead (SSL/network).

The test program fetched the same file 10 times and then
calculated the mean fetch time. The data from the client
program was combined with the matching server log
entries to determine the values in Table 1. Each case was
run several times in succession to average over varia-
tions in the network load. Thus each number is the aver-
age of about 30-40 file fetches.

Several observations can be made from this data. As the
files get bigger, the SSL encryption times tend to domi-
nate the overhead. However, SSL can be configured to
do only authentication and message integrity checking if
encryption is not needed, which would reduce this time.
As more certificates are required to grant access, the
times in the Akenti policy engine increase. We can see
from the Akenti log files that the major categories of
time in the policy engine are fetching certificates and
verifying signatures. In the minimum certificate case
about 79% of the total time was spent fetching certifi-
cates and 9% was spent on signature verification. In the
average certificate case, about 83% of the time was in
fetching certificates and 8% was spent in certificate veri-
fication. Failing to find a certificate, such as an optional
attribute, took more than twice the time of successfully
finding one. The rest of the time was split between read-
ing authority files, parsing the use-conditions and gen-
eral program overhead.

In the case when caching is enabled and a valid capabil-
ity certificate is found, the time in the policy engine is
about 0.11 seconds. The variation that appears in these
times in Table 1 is the result of the capability timing out
and having to be reestablished. The caching lifetimes of
cached use-condition and identity certificates is gener-
ally longer than that for capabilities, so cached versions
of those certificates may be used when reestablishing
the capability.

For a Web server that is mainly fetching documents,
caching by the Akenti policy engine provides a big per-
formance benefit, since there are usually several clus-
tered access to documents in the same general

protection domain. If Akenti is being used by a serve
where the pattern of accesses is isolated, the cach
may actually be a disadvantage, since cache misses
subsequent cache updates are relatively costly.

The corresponding time that it took to fetch 1KB an
1MB files using the same client program but a standa
Apache web server with no access control was abo
0.02 seconds for the 1KB file and between 0.69 and 0.
seconds for the 1MB file. (See Table 2.) For Web ser
ers, that most meaningfully compares to the 0.76 a
1.96 second times for an average set of access c
straints from a caching Akenti server. Obviously, the ta
get applications for Akenti access control are on
where there is something important to protect and t
granularity of the access checking is fairly large, e.g.,
large document to be fetched, or a substantial proces
to be started on the resource machine.

Another case where the Akenti overhead is not to
severe is accessing a Web document that requires
parallel fetching of many secure components. For exa
ple, a document where all its parts are in the same p
tected tree. In this case the browser and the server fe
in parallel, and since Akenti has no trouble working i
parallel and sharing the same cache, the net result
such a clustered fetch is not too much worse than t
secure fetching of one document. For example, for
document containing 10 images, the html frame
retrieved in 4 seconds, the first three images appear a
8 seconds and the rest of the images appear at 10 s
onds. The corresponding behavior for such a page w
no access control is for all the images to appear af
about 1 second.

9. Related Work

Currently there are several other projects working wi
signed certificates to enable access control decisio
One of the earliest attempts to define standards was
Simple Public Key Infrastructure (SPKI) [9] IETF draft
proposal by Ellison, et al. This work proposed a sta
dard for authorization certificates, name certificates a
access control lists that are all represented by a form
ized key-word, value syntax called S-expressions. A

With Akenti
(seconds)

No Akenti
(seconds)

1Kbyte 0.76 0.02

1Mbyte 1.96 0.75

Table 2: Document fetch with and without
Akenti access control

s-
s-
t

n
w
e
ile
te,

t
s.
s,
en
ti-

is
ns
ns

-
t
ry

a
l

th
e
13]

at
eri-
ry

us
the
a
r-
ti-
te
the

a
on
re-
st
ce
-
sm
nt.

n
e-
h.
r-
authorization certificate consists of an issuer, repre-
sented by a public key; a subject also represented by a
public key; an optional delegation field; the actions that
are authorized; and an optional set of real-time con-
straints on the certificate. We chose not to base Akenti
on authorization certificates, but on policy and use-con-
dition certificates instead. Our decision sidesteps the
problem of revoking authorization certificates, and
makes the policy more explicitly stated and thus easier
for multiple stakeholders to understand. Our design also
only allows only one level of delegation, rather than the
possibility of delegation on each certificate. Again this
makes the policy more restrictive, but easier to discover.

Pekka Nekander and Jonna Partanen of Helsinki Univer-
sity of Technology have used the SPKI-style certificates
to carry access permissions with Java code, rather than
relying on local access control configuration files [21].
They argue that maintaining a local security configura-
tion on each machine on which a Java class might be
executed does not scale to large numbers of machines
and classes. This argument is parallel to our observation
that requiring all users to have accounts and to be
entered into ACLs on each resource server does not
scale to separately administered distributed compute
resources.

Nekander’s and Partanen’s system uses authorization
certificates to grant a Java class (or JAR file) specific
permissions. If the machine on which the class is to be
executed accepts the signer of the certificate, the class is
allowed to perform the actions. This type of access deci-
sion supports the Java security model which grants
access to code on the basis of where it came from rather
than who caused it to be executed. However, the focus in
Akenti is on allowing access to resources, which are ref-
erenced through a resource server, by specified classes
of users. Thus it is more natural to base access decisions
on authenticated identity certificates matched against
policy requirements at the time of resource use.

The PolicyMaker [5] and KeyNote [4] trust manage-
ment systems present a very generalized approach to
specifying and interpreting security policies, credentials
and trust relationships. Both of these systems share with
Akenti the goal of putting all the policy and credential
information into signed certificates that can be stored in
a distributed fashion. These certificates are then gath-
ered together by a policy engine module or daemon at
the time of resource access and interpreted to allow or
deny the access. PolicyMaker certificates are much
more generalized than Akenti’s as they consist of pro-
grams written in a general programming language.
Since an access policy is represented by the set of all
such certificates, it may be very hard to understand the

overall access policy for a resource. The KeyNote sy
tem settled on a C-like expression and regular expre
sion syntax for describing conditions, similar to tha
which Akenti uses. However, in an Akenti applicatio
the policy for a resource use is spelled out in a fe
authority files and use-condition certificates which mak
explicit what actions users or classes of user have wh
in an authorization credential system such as KeyNo
all the assertions combine to imply a policy.

KeyNote certificates also differ from Akenti’s in the
principle of “assertion monotonicity” which means tha
each assertion will increase the permitted action
Akenti permits a use-condition to specify negative
e.g., that a person may not be a member of a giv
group. Then if the corresponding certificate that iden
fies the person as a member of the proscribed group
not found, the person may be granted more permissio
than were intended by the stakeholder. Future versio
of Akenti should close this loophole.

A more specific use of identity certificates for authoriza
tion can be found in the Globus Project [15], a join
research project between Argonne National Laborato
and the University of Southern California’s Information
Sciences Institute (USC/ISI). Globus is developing
software infrastructure for distributed computationa
and informational resources, and is experimenting wi
using X.509 identity certificates to provide a one-tim
per session sign-on to a distributed set of resources. [

The Globus infrastructure provides a gateway server
each site. The server on the client side accepts and v
fies a user’s identity certificate and creates a tempora
proxy certificate to represent the user to other Glob
servers. The server at the resource site authenticates
certificate that it receives and maps the identity into
local user ID. The resident operating system then pe
forms access control as usual. This solution was mo
vated by the early use of Globus to provide remo
access to supercomputers. The administrators of
supercomputing sites were not interested in relying on
new access control mechanism. The Globus soluti
allows a user to authenticate once per session by p
senting an identity certificate. However, each user mu
still have a local user ID and account with each resour
server. We are working with the Globus group to inte
grate Akenti as an alternative access control mechani
for those sites that want distributed policy manageme

10. Future Work

There are two general directions for future work o
Akenti. One is to implement the policy engine as a da
mon in addition to the current library module approac
The second is to improve the syntax of the various ce

-
nce
d,
o
ill
s,
of

d
ab-
s-

te
ifi-
ore

n-
tif-
trol
l-

an
t.

n
s-

nd
-

ch

-
eb

d

tificates. Our intent is to define an XML-based (Extensi-
ble Markup Language) [10] format for our certificates.
XML has the advantages of presenting self-describing
documents and being widely used by various scientific
disciplines. There are tools available for validating an
XML document against its document type definition
(DTD) which may be useful to the interface programs
that are used to create the certificates. Our goal is to use
a standard syntax which may be familiar to the people
who have to write and understand the policy.

There are several applications which we intend to inte-
grate with Akenti. We plan to use Akenti to make access
decisions for a network-bandwidth quality of service
(QoS) framework that is being developed at LBNL [16].
In order to conform to the standards of the QoS commu-
nity, a policy server should communicate via the COPS
(Common Open Policy Service) [6] protocol. This is
one of the motivations for implementing Akenti as a
server that will respond to requests for access control
decisions. COPS is a statefull protocol that, among other
things, allows the resource server to upload or download
policy documents. This feature gives us the option of
keeping the authority files with the resource tree and
uploading them to the Akenti server, allowing it to be a
stateless decision maker.

We are currently integrating Akenti security with a
secure mobile agent system that is being developed at
LBNL [19]. This system customizes the Java security
model to enforce policy-based access control on mobile
Java agents.

Another possibility is to implement the proposed stan-
dard Generic Authorization and Access control API [23]
with Akenti. To do so would require adding some addi-
tional library interfaces.

Both COPS and GAA expect the policy module to be
able to make decisions based on the time of day, the
location of the requestor and, in the case of COPS, on
some level of allowed quotas for the resource. In our
current model, Akenti simply copies strings that repre-
sent actions from the use-condition certificates and
returns them to the resource server which interprets
them. The concepts of a time during which a user may
use the resource, an allowed IP address or domain from
which the request may come, and a quota for use of
resources must be added to the policy engine. To accom-
plish this, Akenti will need to define a convention for
naming the use-conditions for time, location and quotas
and then checking for compliance. The last case requires
getting a value for the amount of resources used from
the resource server and storing it as an auxiliary certifi-
cate.

11. Conclusions

In a larger view, useful security is very much a risk man
agement, deployment and user ergonomics issue. O
it has been determined what level of security is require
the hard problem is integrating that level of security int
the end-user (e.g., scientific) environment so that it w
be used, trusted to provide the protection that it claim
easily administered, and genuinely useful in the sense
providing new functionality that supports distribute
organizations and operation. As large enterprises est
lish public key infrastructures and people become accu
tomed to using an identity certificate to authentica
themselves rather than a multitude of passwords, cert
cate-based access control will seem natural and be m
easily understood.

Akenti facilitates the decentralized creation and ma
agement of policy certificates and the use of these cer
icates to make secure policy-based access con
decisions. Distributed certificates permit the decentra
ized administration of shared resources which is
important goal in a collaborative research environmen
We believe that our prototype Akenti implementatio
has demonstrated the viability of such a distributed sy
tem.

Acknowledgments

Case Larsen wrote many of the certificate-handling a
cryptographic libraries used in the Akenti implementa
tion. Bob Aiken and Mary Anne Scott of DOE/ ER/
MICS have been consistent supporters of this approa
to security and access control.

Availability

An early version of the Akenti policy engine and certifi
cate generators can be downloaded from the Akenti w
site. (http://www-itg.lbl.gov/Akenti/)

References

 [1] “The Akenti Approach”, http://www-itg.lbl.gov/
Akenti/

 [2] “About the Apache HTTP Server Project”, http://
www.apache.org/

 [3] “Apache-SSL”, http://www.apache-ssl.org/

 [4] M. Blaze, J. Feigenbaum, A.D. Keromytis, “The
KeyNote Trust Management System”, work in
progress Internet Draft, March1999

 [5] M. Blaze, J. Feigenbaum, J. Lacey, “Decentralize
Trust Management System”,Proceedings of the
17th Symposium of Security and Privacy,pp. 164-

-

38

g/

e

175 IEEE Computer Science Press, Los Alamitos,
1996

[6] J. Boyle, R. Cohen, D. Durham, S. Herzog, R. Rajan,
A. Sastry,“ The COPS (Common Open Policy Ser-
vice) Protocol” , Internet Engineering Task Force
Draft, work in progress

[7] “Diesel Combustion Collaboratory Homepage”, http:/
/www-collab.ca.sandia.gov/

 [8] “DOE2000 Homepage”, http://www.mcs.anl.gov/
DOE2000/

 [9] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Tho-
mas, T. Yloenen, “ Simple Public Key Certificate”,
Internet Engineering Task Force Draft, work in
progress

 [10] “Extensible Markup Language” http://www.w3.org/
XML/

 [11] S. Farrell, R. Housley, “An Internet AttributeCertifi-
cate Profile for Authorization”, Internet Engineering
Task Force Draft, work in progress

 [12] W. Ford,Computer Communications Security: Prin-
ciples, Standards, Protocols, and Techniques, Pren-
tice-Hall, Englewood Cliffs, New Jersey, 07632, 1995

 [13] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke, “A
Security Architecture for Computation Grids”, Proc.
5th ACM Conference on Computer and Communica-
tions Security Conference, pg. 83-92, 1998.

[14] A. Geist, N. Nachtigal, “ORNL Electronic Notebook
Project”, http://www.epm.ornl.gov/~geist/java/
applets/enote/

 [15] “The Globus Project”, http://www-fp.globus.org/

 [16] G. Hoo, W. Johnston, “QoS as Middleware: Band-
width Brokering System Design”, submitted to the
High Performance and Distributed Computing con-
ference 1999.

 [17] R. Housely, W. Ford, W. Polk, D. Solo, “Internet
X.509 Public Key Infrastructure”, Internet Engineer-
ing Task Force Draft, PKIX Working group, work in
progress. Also see Ford & Baum,Secure Electronic
Commerce, Prentice-Hall, pp 214-230

 [18] W. Johnston, S. Mudumbai, M. Thompson, “Autho-
rization and Attribute Certificates for Widely Distrib-
uted Access Control”,IEEE 7th International
Workshops on Enabling Technologies: Infrastructure

for Collaborative Enterprises- WETICE ‘98

 [19] S. Mudumbai, A. Essiari, W. Johnston, “Anchor - A
Secure Mobile Agent Toolkit”, - submitted to Mobile
Agents ‘99

 [20] B.C. Neuman and T. Ts’o, “Kerberos: An Authenti
cation Service for Computer Networks”, IEEE Com-
munications Magazine, v.32, n.9, Sep 1994, pp. 33-

 [21] P. Nikander, J. Partanen, “Distributed Policy Man-
agement for JDK 1.2”,Proceedings of Network and
Distributed System Security Symposium, San Diego,
CA, Feb 3-5, 1999

 [22] OMG-CORBA homepage” http://www.omg.org

[23] T. Ryutov, C. Neuman, “Access Control Framework
for Distributed Applications”, Internet Engineering
Task Force Draft, work in progress

[24] B. Schneier,Applied Cryptography, Second Edition,
John Wiley & Sons, 1996

[25] “The SSL Protocol”, http://home.netscape.com/en
security/SSL_2.html

 [26] “SSLeay FAQ”, http://www.psy.uq.oz.au/~ftp/
Crypto/

 [27] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C.
Brooks, D. Gunter, “The NetLogger Methodology for
High Performance Distributed Systems Performanc
Analysis”,Proceedings of the IEEE High Perfor-
mance Distributed Computing -7, ‘98

