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the external work arriving and the load due to the overhead imposed by the aigorithm
can become higher than the service capacity of the system, causing system instability.

Altematlvely, an algorithm can be stable but may still cause a system (o perform
worse than when it is not using the algorithm. Hence, a more restrictive criterion for
ng algorithms is desirable, and we use the effectiveness of an algorithm as the

evaluz
evaluaung criterion. A load distributing algorithm is said to be effective under a given
set of conditions if it improves the performance relative to that of a system not using
load distributing. Note that while an effective algorithm cannot be unstable, a stable

algorithm can be ineffective,

11.5.2 The Algorithmic Perspective

If an algorithm can perform fruitless actions indefinitely with finite probability, the
algorithm is said to be unstable [31. For example, consider processor thrashing. The
transfer of a task to a receiver may increase the receiver’s queue length to the point
of overload, necessitating the transfer of that task to vet another node. This process
may repeat indefinitely [3]. In this case, a task is moved from one node to another in
search of a lightly loaded node without ever receiving service. Discussions on various
types of algorithmic instability are beyond the scope of this book and can be found
in [6].

11.6 LOAD DISTRIBUTING ALGORITHMS

We now describe some load distributing algorithms that have appeared in the literature
and discuss their performance.
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Transfer policy. All three algorithms use the same transfer policy, a threshold policy
based on CPU queue 1engm A node is 1dentified as a senuer i a new [asx ongmaung

for iransfer.

Location policy. These algorithms differ only in their location policy:

Random. Random ig a simple dynamic location policy that nses no remote :
information. A task is simply !‘ransterred to a node selected at random, with no mior-
mation exchange between the nodes to aid in decision making. A problem with this
approach is ihat uscless {ask (ransfers can occur when a {ask is tansfeiied 10 a node
that is already heavily loaded (i.e., its queue length is above the threshold). An issue
raised with this policy concerns the question of how a node should treat a transferred
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another node if the local queue length is above the threshold. Eager et al. [11] have
shown that if such is the case, then irrespective of the average load of the system,
the system will eventually enter a siate in which the nodes are spending all their time
transferring tasks and not executing them. A simple solution to this problem is to limit
the number of times a task can be transferred. A sender-initiated algorithm using the
random location policy provides substantial performance improvement over no load

sharing at all [11].

Threshold. The problem of useless task transfers under random location policy
can be avoided by polling a node (selected at random) to determine whether it is a
receiver (see Fig. 11.3). If so, the task is transferred to the selected node, which must
execute the task regardless of its state when the task actually arrives. Otherwise, another
node is selected at random and polled. The number of polls is limited by a parameter
called PollLimit to keep the overhead low. Note that while nodes are randomly selected,
a sender node will not poll any node more than once during one searching session of
PollLimit polls. If no suitable receiver node is found within the PollLimit polls, then
the node at which the task originated must execute the task. By avoiding useless task
transfers, the threshold policy provides substantial performance improvement over the
random location policy [11].

Shortest. The two previous approaches make no effort to choose the best receiver
for a task. Under the shortest location policy, a number of nodes (= PollLimit) are
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Sender-initiated load sharing with threshold location policy.

selected at random and are polled to determine their queue length [11]. The node
with the shortest queue length is selected as the destination for task transfer unless its
queue length > 7. The destination node will execute the task regardless of its queue
length at the time of arrival of the transferred task. The performance improvement
obtained by using the shortest location policy over the threshold policy was found to be
marginal [11], indicating that using more detailed state information does not necessarily
result in significant improvement in system performance.

Information policy. When either the shortest or the threshold location policy is used,
polling activity commences when the transfer policy identifies a node as the sender of a
task. Hence, the information policy can be considered to be of the demand-driven type.

Stability. These three approaches for location policy used in sender-initiated algorithms
cause system instability at high system loads, where no node is likely to be lightly
loaded, and hence the probability that a sender will succeed in finding a receiver node
is very low. However, the polling activity in sender-initiated algorithms increases as the
rate at which work arrives in the system increases, eventually reaching a point where
the cost of load sharing is greater than the benefit. At this point, most of the available
CPU cycles are wasted in unsuccessful polls and in responding to these polls. When
the load due to work arriving and due to the load sharing activity exceeds the system’s
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Receiver-initiated load sharing.
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A drawback. Under the most widely used CPU scheduling disciplines (such as round-
robin and its variants), a newly amrived task is quickly provided a quantum of service.
In receiver-initiated algorithms the polling starts when a node becomes a receiver.
HOWC:VGI, it i8 Luuu&t:ly that these Puua will be received at senders when new tasks
that have arrived at them have not yet begun executing. As a result, a drawback of
receiver-initiated algorithms is that most transfers are preemptive and therefore expen-
sive. LOI]VE:IbCly, sender-initiated cuguuuuub are able to make Ercmm use of o Honpre-
emptive transfers because they can initiate load distributing activity as soon as a new

task arrives.

11.6.3 Symmetrically Initiated Algorithms

Under symmetrically initiated algorithms [21], both senders and receivers search for
receivers and senders, respectively, for task transfers. These algorithms have the ad-
vantages of both sender- and receiver-initiated algorithms. At low system loads, the
sender-initiated component is more successful in finding underloaded nodes. At high
system loads, the receiver-initiated component is more successful in finding overloaded
nodes. However, these algorithms are not immune from the disadvantages of both
sender- and receiver-initiated algorithms. As in sender-initiated algorithms, polling at
high system loads may result in system instability, and as in receiver-initiated algo-
rithms, a preemptive task transfer facility is necessary.

A simple symmetrically initiated algorithmo can be constructed by using both the
transfer and location policies described in Secs. 11.6.1 and 11.6.2. Another symmetri-
cally initiated algorithm, called the above-average algorithm [20], is described next.

THE, ABOVE-AVERAGE ALGORITHM. The above-average algorithm, proposed by
Krueger and Finkel [20], tries to maintain the load at each node within an acceptable
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Location pelicy. The location policy has the following two components:
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A receiver (a node that has a load less than the acceptable range) that receives a
TooHigh message cancels its TooLow timeout, sends an Accept message to the source
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be received), and sets an AwaitingTask timeout. Increasing its load value prevents a
receiver from over-committing itself to accepting remote tasks. If the AwaitingTask

timeont exnirag withont the arrival of a trancferred tack tha lnad value af the racaivar
fimeout expires witnout {he amrival of a {ransferred tasx, the load vaiue at the recelver

is decreased.

On receiving an Accept message, if the node is still a sender, it chooses the best
task to transfer and transfers it to the node that responded.

On expiration of the TooHigh timeout, if no Accept message has been received,
the sender infers that its estimate of the average system load is too low (since no
node has a load much lower). To correct this problem, the sender broadcasts a
ChangeAverage message to increase the average load estimate at the other nodes.

Receiver-initiated component

A node, on becoming a receiver, broadcasts a TooLow message, sets a TooLow
timeout alarm, and starts listening for a TooHigh message.

If a TooHigh message is received, the receiver performs the same actions that it does
under sender-initiated negotiation (see above).

If the TooLow timeout expires before receiving any TooHigh messages, the receiver
broadcasts a ChangeAverage message to decrease the average load estimate at the
other nodes.

Selection policy. This algorithm can make use of any of the approaches discussed

under the selection policy in Sec.11.4.2.



11.6.4 Adaptive Algorithms
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node, comprised of a senders list, a receivers list, and an OK list. These lists are main-
tained using an efficient scheme in which list manipulative actions, such as moving a
node from one list to another, or finding the list to which a node belongs, impose a small
and constant overhead irrespective of the number of nodes in the system. (See [31] for
more details on the list maintenance scheme.)

Initially, each node assumes that every other node is a receiver. This state is

represented at each node by a receivers list that contains all nodes (except itself), an

empty senders list, and an empty OK list.

Transfer policy. The transfer policy is a threshold policy where decisions are based
on CPU gueue length. The transfer policy is triggered when a new task originates or
when a task departs. The transfer policy makes use of two threshold values to classify
the nodes: a lower threshold (LT) and an upper threshold (UT). A node is said to be a
sender if its queue length > UT, a receiver if its queve length < LT, and OK if LT <
node’s quene length < UT.

Location policy. The location policy has the following two components:

Sender-initiated Component. The sender-initiated component is triggered at a
node when it becomes a sender. The sender polls the node at the head of the receivers
list to determine whether it is still a receiver. The polled node removes the sender node
ID from-the list it is presently in, puts- it at the head of its senders list, and informs
the sender whether it is a receiver, sender, or OK node based on ifs current status. On
receipt of this reply, the sender transfers the new task if the polled node has indicated
that it is a receiver. Otherwise, the polled node’s ID is removed from the receivers list
and put at the head of the OK list or at the head of senders list based on its reply. Then
the sender polls the node at the head of the receivers list.
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list it is presenﬂy in and puts it at the head of the appropnate list based on its reply.
The polhng process stops if a sender is found, if the receiver is no longer a

recelver, or if the number of pOllS reaches a static Polilimii.

Selection policy. The sender-initiated component considers only newly arrived tasks
for transfer. The receiver-initiated component can make use of any of the approaches
discussed under the selection nolicy in Sec. 11.4.2.
Information policy. The information policy is demand-driven, as the polling activity
starts when a node becomes a sender or a receiver.

Discussion. At high system loads, the probability of a node being underloaded is neg-
ligible, resulting in unsuccessful polls by the sender-initiated component. Unsuccessful
polls result in the removal of polled node IDs from receivers lists. Unless receiver-
initiated polls to these nodes fail to find them as senders, which is unlikely at high
system loads, the receivers lists remain empty. As a result, future sender-initiated polls
at high system loads (which are most likely to fail) are prevented. (Note that a sender
polls only nodes found in its receivers list.) Hence, the sender-initiated component is
deactivated at high system loads, leaving only receiver-initiated load sharing (which is
effective at such loads).

At low system loads, receiver-initiated polling generally fails. These failures do
not adversely affect performance because extra processing capacity is available at low
system loads. In addition, these polls have the positive effect of updating the receivers
lists. With the receivers lists accurately reflecting the system state, future sender-initiated
load sharing will generally succeed within a few polls. Thus, by using sender-initiated
load sharing at low system loads, receiver-initiated load sharing at high loads, and
symmetrically initiated load sharing at moderate loads, the stable symmetrically initiated
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node becomes a recetver, it informs all the nodes that are misinformed about its current
state. The misinformed nodes are those nodes whose receivers lists do not contain
the receiver’s ID. This information is available in the statevecior at ihe receiver. The
statevector at the receiver is then updated to reflect that it now belongs to the receivers

list at all those nodes that were informed of its current state. By this technique this

<}

aigommm avoids receivers sending broadcast messages o inform other nodes ihat they
are receivers. Remember that broadcast messages impose message handling overhead
at all nodes in the system. This overhead can be high if nodes frequently change their
state.

Note that there are no preemptive transfers of partly executed tasks here. The
sender-initiated load sharing component will perform any load sharing, if possible on
the arrival of a new task. The stability of this approach is due 1o the same reasons given
for the stability of the stable symmetrically initiated algorithm.

i11.7 PERFORMANCE COMPARISON

This section discusses the general performance trends of some of the example algo-
rithms described in the previous section. Figure 11.5 through Fig. 11.7 plot the average
response time of tasks vs. the offered system load for several load sharing algorithms
discussed in Sec. 11.6 [32]. The average service demand for tasks is assumed to be
one time unit, and the task interarrival times and service demands are independently
exponentially distributed. The system load is assumed to be homogeneous; that is, all
nodes have the same long-term task arrival rate. The system is assumed to contain
40 identical nodes. The notations used in the figures correspond to the algorithms as

follows:
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low transfer costs as smaller differences in node queue lengths can be exploited; high
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For these comparisons, a small, fixed PollLimit = 5 was assumed. We can see why
such a small limit is sufficient by noting that if P is the probabi]ity that a particular node
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bility that a node below threshold is first encountered on the 7th poll is P(1— Py-111).
For large P, this expression decreases rapidly with increasing #; the probability of suc-
ceeding on the first few polls is high. For small P, the quantity decreases more slowly.
However, since most nodes are above threshold, the improvement in systemwide re-
sponse time that will result from locating a node below threshold is small; quitting the
search after the first few polls does not carry a substantial penalty.

Main result. Comparing M/M/1 with the sender-initiated algorithm that uses the ran-
dom location policy (RAND) in Fig. 11.5, we see that even this simple load distributing
scheme provides a substantial performance improvement over a system that does not
use load distributing. Considerable further improvement in performance can be gained
through simple sender-initiated (SEND) and receiver-initiated (RECV) load sharing
schemes. M/M/K gives the optimistic lower bound on the performance that can be
obtained through load distributing, since it assumes no load distributing overhead.

11.7.1 Receiver-initiated vs. Sender-initiated Load Sharing

It can be observed from Fig. 11.5 that the sender-initiated algorithm (SEND) performs
marginally better than the receiver-initiated algorithm (RECYV) at light to moderate
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Average response time vs. system load (adapted from [321).

system loads, while the receiver-initiated algorithm performs substantially better at
high system loads . Receiver-initiated load sharing is less effective at low system loads

because load sharing is not initiated when one of the few nodes becomes a sender, and
thus load sharing often occurs late.

Regarding the robustness of these policies, the receiver-initiated policy has an edge
over the sender-initiated policies. The receiver-initiated policy performs acceptably with
a single value of the threshold over the entire system load spectrum, whereas the sender-
initiated policy requires an adaptive location policy to perform acceptably at high loads.
It can be seen from Fig. 11.5 that at high system loads, the receiver-initiated policy
maintains system stability because its polls generally find busy nodes, while polls due
to the sender-initiated policy are generally ineffective and waste resources in efforts to
find underloaded nodes.

11.7.2 Symmetrically Initiated Load Sharing

This policy takes advantage of its sender-initiated load sharing component at low sys-
tem loads, its receiver-initiated component at high system loads, and both of these
components at moderate system loads. Hence, its performance is better or matches that
of the sender-initiated policy at all levels of system load, and is better than that of
receiver-initiated policy at low to moderate system loads [32] (Fig. 11.6). Nevertheless,
this policy also causes system instability at high system loads because of the ineffective
polling activity of its sender-initiated component at such loads.
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that of M/M/K. (Fig. 11.7), though this optimistic lower bound can never be reached, as
it assumes no load distributing overhead. The performance of ADSYM matches that of
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at high loads (> 0.85) over all the nonadaptive algorithms [31]. This performance
improvement is the result of its judicious use of the knowledge gained by polling.
Furthermore, this algorithm does not cause system instability.

The stable sender-initiated algorithm (ADSEND) yields a better performance than
the unstable sender-initiated policy (SEND) for system loads > 0.6 and does not cause
system instability. While ADSEND is not as effective as ADSYM, it does not require
expensive preemptive task transfers.

11.7.4 Performance Under Heterogeneous Workloads

Heterogeneous workloads have been shown to be common for distributed systems [19].
Figure 11.8 plots mean response time against the number of nonload generating nodes
at a constant offered system load of 0.85. These nodes originate none of the system
workload, while the remaining nodes originate all of the system workload. From the
figure, we observe that RECV becomes unstable at a much lower degree of heterogeneity
than any other algorithm. The instability occurs because, in RECV, the load sharing does
not start in accordance with the arrivals of tasks at a few (but highly overloaded) sender
nodes, and random polling by RECV is likely to fail to find a sender when only a small
subset of nodes are senders. SEND also becomes unstable with increasing heterogeneity.
As fewer nodes receive all the system load, it is imperative that they quickly transfer
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tasks. But the senders hecome overwhelmed, as random polling is ineffective in reducing
wasteful tries. SYM also becomes unstable at higher levels of heterogeneity because of
ineffective polling. SYM outperforms RECV and SEND because it can transfer tasks at
a higher rate than either RECV or SEND alone can. The sender-initiated algorithm with
the random location policy (RAND) performs better than most algorithms at extreme
levels of heterogeneity. By simply transferring tasks from the load-generating nodes to
randomly selected nodes without any regard to their status, it essentially balances the
load across all nodes in the system, thus avoiding instability.

Only ADSYM remains stable and performs better with increasing heterogeneity.
As heterogeneity increases, senders rarely change their state and will generally be in
senders list at nonload generating nodes. The nonload generating nodes will alternate
between OK and receiver states and appear in OK or receivers lists at senders. When the
lists accurately represent the system state, nodes are often successful at finding partners.

11.8 SELECTING A SUITABLE LOAD SHARING
ALGORITIIM

Based on the performance trends of load sharing algorithms, one may select a load
sharing algorithm that is appropriate to the system under consideration as follows:

1. If the system under consideration never attains high loads, sender-initiated algo-
rithms will give an improved average response time over no load sharing at all.

2. Stable scheduling algorithms are recommended for systems that can reach high
loads. These algorithms perform betier than nonadaptive algorithms for the follow-

ing reasons:



