Naming and Directory Services

1. General Concepts
2. Examples
 - Domain Name Service (DNS)
 - X.500/LDAP
 - Corba Naming Service

1. General Concepts

Structure:
(name, attributes)

• name/attributes may refer to a person, device, object, service, etc.
• types of resolution:
 • search by name (white pages)
 • search by attributes (yellow pages)
Naming versus Locating Entities

(a) Direct, single level mapping between names and addresses.
(b) Two-level mapping using identities.

Design Issues

- Binding information is relatively static
 - Optimized for high-volume reading
- Principal operations are query/change
 - Need not support complex database operations
 - May provide a simple query API
- Information tailored for a specific purpose
 - Predefined/fixed schema
Design Issues

scalability → partitioning
reliability → replication
performance → caching

Iterative Name Resolution

<nl, vu, cs, ftp> 1. <nl, vu, cs, ftp> 2. #<nl> <vu, cs, ftp> 3. <vu, cs, ftp> 4. #<vu>, <cs, ftp> 5. <cs, ftp> 6. #<cs>, <ftp> 7. <ftp> 8. #<ftp> Root name server
Name server nl node
Name server vu node
Name server cs node

Nodes are managed by the same server
Recursive Name Resolution

Information Views
2. Examples

- Domain Name Service (DNS)

 www.cs.vt.edu → IP address

- X.500/Lightweight Directory Access Protocol (LDAP)

 C=US, OU=Virginia Tech, CN=Dennis Kafura → email address

- Corba Naming Service

 name1.kind1/name2.kind2/name3.kind3 → object

DNS Organization

- An example partitioning of the DNS name space, including Internet-accessible files, into three layers.
DNS Organization

<table>
<thead>
<tr>
<th>Item</th>
<th>Global</th>
<th>Administrative</th>
<th>Managerial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographical scale of network</td>
<td>Worldwide</td>
<td>Organization</td>
<td>Department</td>
</tr>
<tr>
<td>Total number of nodes</td>
<td>Few</td>
<td>Many</td>
<td>Vast numbers</td>
</tr>
<tr>
<td>Responsiveness to lookups</td>
<td>Seconds</td>
<td>Milliseconds</td>
<td>Immediate</td>
</tr>
<tr>
<td>Update propagation</td>
<td>Lazy</td>
<td>Immediate</td>
<td>Immediate</td>
</tr>
<tr>
<td>Number of replicas</td>
<td>Many</td>
<td>None or few</td>
<td>None</td>
</tr>
<tr>
<td>Is client-side caching applied?</td>
<td>Yes</td>
<td>Yes</td>
<td>Sometimes</td>
</tr>
</tbody>
</table>

A comparison between name servers for implementing nodes from a large-scale name space partitioned into a global layer, as an administrational layer, and a managerial layer.

The DNS Name Space - Records

<table>
<thead>
<tr>
<th>Type of record</th>
<th>Associated entity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOA</td>
<td>Zone</td>
<td>Holds information on the represented zone</td>
</tr>
<tr>
<td>A</td>
<td>Host</td>
<td>Contains an IP address of the host this node represents</td>
</tr>
<tr>
<td>MX</td>
<td>Domain</td>
<td>Refers to a mail server to handle mail addressed to this node</td>
</tr>
<tr>
<td>SRV</td>
<td>Domain</td>
<td>Refers to a server handling a specific service</td>
</tr>
<tr>
<td>NS</td>
<td>Zone</td>
<td>Refers to a name server that implements the represented zone</td>
</tr>
<tr>
<td>CNAME</td>
<td>Node</td>
<td>Symbolic link with the primary name of the represented node</td>
</tr>
<tr>
<td>PTR</td>
<td>Host</td>
<td>Contains the canonical name of a host</td>
</tr>
<tr>
<td>HINFO</td>
<td>Host</td>
<td>Holds information on the host this node represents</td>
</tr>
<tr>
<td>TXT</td>
<td>Any kind</td>
<td>Contains any entity-specific information considered useful</td>
</tr>
</tbody>
</table>
DNS Example

• An excerpt from the DNS database for the zone cs.vu.nl.

<table>
<thead>
<tr>
<th>Name</th>
<th>Record type</th>
<th>Record value</th>
</tr>
</thead>
<tbody>
<tr>
<td>cs.vu.nl</td>
<td>SOA</td>
<td>star (1999121502,72000,36000,2419200,86400)</td>
</tr>
<tr>
<td>cs.vu.nl</td>
<td>NS</td>
<td>etar.cs.vu.nl</td>
</tr>
<tr>
<td>cs.vu.nl</td>
<td>NS</td>
<td>top.cs.vu.nl</td>
</tr>
<tr>
<td>cs.vu.nl</td>
<td>NS</td>
<td>solo.cs.vu.nl</td>
</tr>
<tr>
<td>cs.vu.nl</td>
<td>TXT</td>
<td>"Vrije Universiteit - Math. & Comp. Sc."</td>
</tr>
<tr>
<td>cs.vu.nl</td>
<td>MX</td>
<td>1 zephyr.cs.vu.nl</td>
</tr>
<tr>
<td>cs.vu.nl</td>
<td>MX</td>
<td>2 tomando.cs.vu.nl</td>
</tr>
<tr>
<td>cs.vu.nl</td>
<td>MX</td>
<td>3 star.cs.vu.nl</td>
</tr>
<tr>
<td>star.cs.vu.nl</td>
<td>HINFO</td>
<td>Sun Unix</td>
</tr>
<tr>
<td>star.cs.vu.nl</td>
<td>MX</td>
<td>1 star.cs.vu.nl</td>
</tr>
<tr>
<td>star.cs.vu.nl</td>
<td>MX</td>
<td>10 zephyr.cs.vu.nl</td>
</tr>
<tr>
<td>star.cs.vu.nl</td>
<td>A</td>
<td>192.31.231.66</td>
</tr>
<tr>
<td>zephyr.cs.vu.nl</td>
<td>HINFO</td>
<td>Sun Unix</td>
</tr>
<tr>
<td>zephyr.cs.vu.nl</td>
<td>MX</td>
<td>1 zephyr.cs.vu.nl</td>
</tr>
<tr>
<td>zephyr.cs.vu.nl</td>
<td>MX</td>
<td>2 tomando.cs.vu.nl</td>
</tr>
<tr>
<td>zephyr.cs.vu.nl</td>
<td>A</td>
<td>192.31.231.66</td>
</tr>
<tr>
<td>www.cs.vu.nl</td>
<td>CNAME</td>
<td>soeling.cs.vu.nl</td>
</tr>
<tr>
<td>ftp.cs.vu.nl</td>
<td>CNAME</td>
<td>soeling.cs.vu.nl</td>
</tr>
<tr>
<td>soeling.cs.vu.nl</td>
<td>HINFO</td>
<td>Sun Unix</td>
</tr>
<tr>
<td>soeling.cs.vu.nl</td>
<td>MX</td>
<td>1 soeling.cs.vu.nl</td>
</tr>
<tr>
<td>soeling.cs.vu.nl</td>
<td>MX</td>
<td>10 zephyr.cs.vu.nl</td>
</tr>
<tr>
<td>soeling.cs.vu.nl</td>
<td>A</td>
<td>130.37.24.11</td>
</tr>
<tr>
<td>laser.cs.vu.nl</td>
<td>HINFO</td>
<td>PC MS-DOS</td>
</tr>
<tr>
<td>laser.cs.vu.nl</td>
<td>A</td>
<td>130.37.30.35</td>
</tr>
<tr>
<td>vucs-dass.cs.vu.nl</td>
<td>PTR</td>
<td>0.26.37.130.in-addr.arpa</td>
</tr>
<tr>
<td>vucs-dass.cs.vu.nl</td>
<td>A</td>
<td>130.37.26.0</td>
</tr>
</tbody>
</table>

LDAP: Evolution

- DAP
- OSI
- TCP/IP
- Directory server
- Directory client
LDAP/X.500 - Models

- Information (what is stored in an entry)
- Naming (how are entries identified/organized)
- Functional (what operations are provided)
- Security (how is authentication and authorization provided)

LDAP Information Model

<table>
<thead>
<tr>
<th>attribute</th>
<th>syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>commonName (CN)</td>
<td>cis: case ignore string</td>
</tr>
<tr>
<td>telephoneNumber</td>
<td>tel: text, ignoring blanks and dashes</td>
</tr>
</tbody>
</table>

Mandatory objectClass attribute defining the schemas for other mandatory and permitted attributes

Defines syntax of value(s)
LDAP Naming Model

Directory Information
Tree (DIT)

- relative distinguished name (RDN) represented as a name = value pair (e.g. OU = Computer Science)
- distinguished name (DN) represented as a comma-separated sequence of RDNs (e.g., CN=Dennis Kafura, OU=Computer Science, O=Virginia Tech, C=US)

LDAP Naming Model - Distribution

The “root DSE” stored at a server is an empty (zero-length) distinguished name that is used to store as its attributes:
- suffixes provided by this server
- object classes and attribute schema
LDAP Functional Model

• Operation Categories
 – Query (search, compare)
 – Update (add, delete, modify)
 – Authentication (bind, unbind, abandon)

• Search parameters
 – base (DN of where to begin search)
 – scope (extent of subtree examined)
 – filter (criteria for an entry to be matched)
 – attributes (list of attributes returned from each matched entry)
 – alias (whether aliases are followed)
 – limits (in size/time)

• Filters
 – boolean combination of attribute-value comparisons
 – example: \([(SN = Smith) \) \& \& \((OU=Autstin) (SN=Miller))\)

LDAP Security Model

• Authentication
 – None (anonymous session)
 – Basic (DN (i.e., username) and password)
 – Simple Authentication and Security Layer (SASL)
 • GSSAPI
 • Kerberos
 • External (e.g., SSL/TLS)

• Access control
 – vendor specific
 – access control list is typical
Corba Naming Service - Names

- Implemented as a CORBA service; operations described as an IDL interface.
- Names: each name component can refer to
 - naming context (an object for resolving names)
 - application object
- Naming contexts can be structured to create naming graphs
- Compound names locate an object in a naming graph (a sequence of names defining a path in the naming graph)

```
struct NameComponent {
    String id;
    String kind;
};
typedef sequence<NameComponent> Name;
```

Corba Naming Service - Operations

Operations:

```
void bind (in Name n,m in Object o);
Object resolve (in Name n);
void undind (Name n);
NamingContext bind_new_context (in Name n);
void destroy ()
```

![Diagram]
Corba Naming Service - Federation

A federated naming graph can span multiple naming services.