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Motivation

Developers of systems software have “rules”
to check for correctness or performance. (Do 
X, don’t do X, do X before Y…)
Code that does not obey these “rules” will 
run slow, crash the system, launch the 
missiles…
Consequently, we need a systematic way of 
finding as many of these bugs as we can, 
preferably for as little cost as possible.
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What Will we be Talking About?

What’s the problem?
What’s the solution?
Discuss some of the interesting details
– Assertion Checking
– Global Rule Enforcement
– FLASH Optimizations

Evaluation and conclusions
Some related work/history of the paper
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What’s the Problem?

Current solutions all have trade-offs.
Formal Specifications-rigorous, mathematical 
approach

– Finds obscure bugs, but is hard to do, expensive, and don’t 
always mirror the actual written code.

Testing-systematic approach to test the actual code
– Will detect bugs, but testing a large system could require 

exponential/combinatorial number of test cases.  It also 
doesn’t isolate where the bug is, just that a bug exists.

Manual Inspection-peer review of the code
– Peer has knowledge of whole system and semantics, but 

doesn’t have the diligence of a computer.
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What’s the Problem?

None of the current methods seem to give us what 
we’re looking for.
Can the compiler check the code?

– It would be nice to put the code in the compiler and have it 
check all of the “rules.”

– Unfortunately, those “rules” are based on semantics of the 
system that the compiler doesn’t understand.  (Lock and 
Unlock are valid to the compiler, but how and when they 
should be used isn’t.)

Need some technique that merges the domain 
knowledge of the developer with the analysis of a 
compiler.

6

What’s the Solution?

Meta-level compilation (MC) combines the 
domain knowledge of developers with 
analysis capabilities of a compiler.
Allows programmers to write short, simple, 
system-specific checkers that take into 
account unique semantics of a system.
Checkers are then added to a compiler to 
check during compile-time.
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What’s the Solution?

The author’s MC system uses a high-level, state-
machine language called Metal.
Metal extensions written by programmers are linked 
to a compiler (xg++) that analyzes the code as it is 
being compiled.

– Intra and Interprocedural analysis.

xg++source.cpp

Metal “rules”
Warnings/Errors

source.o
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How does it work?

The language is a high-level, state-machine 
language.
Two parts of the language—pattern part and state-
transition part.

– Pattern language—finds “interesting” parts of code based 
on the extension the programmer writes.

– State-transition—Based on the discovered pattern, current 
state, either move to a new state or raise an error.

Tests are written and then added to the xg++ 
compiler.  Xg++ includes a base library that includes 
some common, useful functions and types.
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How does it work?

Compiler generates the AST for the program 
that is being compiled. 
Metal extensions are compiled into a set of 
transitions.
The xg++ compiler traverses the AST for the 
program in execution order in a depth-first 
manner, following the transition patterns, as 
they apply.
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AST for an Assert Statement

assert(_exos_self_inser
t_pte(0, 
PG_P|PG_U|PG_W, 
PGROUNDDOWN(va), 
0, NULL) == 0);

assert

expr

==

_exos_self_insert_pte int

expr expr

0expr expr Expr expr expr

( )
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Assertion Checking

Assertions should check a value, a state, etc.
Assertions should not change any values or 
the state of the program.  (ie, you should be 
able to take them out of the program without 
any change.)
Example that would crash if it was removed:

assert(_exos_self_insert_pte(0, PG_P|PG_U|PG_W, 
PGROUNDDOWN(va), 0, NULL) == 0);
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Assertion Checking

sm Assert flow_insensitive {

decl { any } expr, x, y, z;
decl { any_call } any_fcall;
decl { any_args } args;

start: { assert(expr); } ==>
{ mgk_expr_recurse(expr, in_assert); } ;
in_assert:
{ any_fcall(args) } ==>{ err("function

call"); }
| { x = y } ==> { err("assignment"); }
| { z++ } ==> { err("post-increment"); }
| { z-- } ==> { err("post-decrement"); } ;
}

Start

in_assert

assert(expr)

err

err

err
err
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Other 
structuresVariable Declarations—

”any” symbolizes a hole 
type, with self-
explanatory names.

State Transitions:  
Given current state, if 
you see the given 
pattern, execute what 
is after the ==> 
(Typically an error 
message or a state 
transition.)
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Global Rule Checking

Many rules apply globally across function call 
chains.
Example: Rules that are expressed in terms 
of blocking functions, such as certain types of 
deadlock.
xg++ provides mechanisms for gathering 
“global” data and then applying it to a xg++ 
extension.
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Global Rule Checking—Checking for 
Deadlock

“Kernel code cannot call blocking functions with 
interrupts disabled or while holding a spin lock.  
Violating this rule can lead to deadlock.”
We need to include a rule that will handle this rule.

– Unfortunately, when executing a rule like this, we need to 
know what function calls can result in a call to a blocking 
function.

Solution: Use Global Rule Checking
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Global Rule Checking—Checking for 
Deadlock

Compiler’s 2 passes generate a call graph.
– First pass uses a Metal extension to find those functions 

that potentially block, tags those functions in the resulting 
call graph.

– Second pass links all files sent to xg++ into a large call 
graph, does a depth-first traversal to find all functions that 
have a path to a blocking function.  Generates a listing of 
these functions.

Now, we can execute a localized rule within the 
context of these blocking functions.
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Global Rule Checking—Checking for 
Deadlock

With the list of blocking 
functions available, a second 
extension is run through the 
program code.
Rules include detecting when 
spin locks are enabled/disabled 
or when interrupts are 
enabled/disabled.
When in the state where locks 
are enabled or interrupts are 
disabled, a blocking function 
cannot be called because it can 
cause deadlock in the Linux 
implementation.

Clean Interrupts, 
Locked

No Interrupts, not Locked

No Interrupts, Locked

err

+/-
Interrupts

+/- lock

+/-
Interrupts

+/- lock

Function call 
that can 
block

Function call 
that can block
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New, Improved Global Rule Checking

Global Rule Checking was formalized in later version 
of Metal.
Two Passes

– First Pass: Each file being compiled has a temporary AST 
generated for it.

– Second Pass: Reads temporary files to reconstruct the 
ASTs for entire program, control-flow graph is generated to 
trace the execution through multiple files.  (Functions that 
aren’t called are the roots of the trees.)

Metal extensions are then run on the AST in depth-
first manner based on the control-flow graph that is 
generated.
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FLASH Optimizations

Not only can you detect software bugs, it should be 
obvious that any types of rules can be enforced 
using this code, including performance-enhancing 
rules.
Example: FLASH Hardware/Software

– Code for FLASH must be fast because it implements 
functionality usually in hardware.

– Been aggressively optimized for many years, but MC still is 
able to provide hundreds of optimizations, because it’s hard 
to manually traverse deeply nested control paths.
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FLASH Optimizations

Buffer-free optimizations
– Traces send calls.  Detects if a buffer is needed and if the 

send frees the buffer.
Redundant length assignments

– It can be difficult down deep nesting paths to remember if a 
length field for a buffer has already been set.

– Metal allows for such a scan.
Efficient opcode setting

– Scan to see if the message header has a known opcode
already there.  If so, recommend XOR’ing with the desired 
opcode.  (Reduces assembly instructions to 1.)
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Evaluation

Anecdotal evidence throughout the paper demonstrating that 
MC discovers a large number of bugs.

– Ran tests on FLASH’s cache coherence code, as well as versions 
of Linux.

– In both cases, the rule extensions that were run found bugs that
could have potentially crashed the system.

– In one case, there was a bug that was detected that would have 
required the tester to look through 300 lines of code, 20 if-
statements, 4 else clauses, and 29 conditional compilations.

The large number of bugs is magnified by the fact that the rules
for finding the bugs were written in few lines of code (<100, in
most cases.)
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Evaluation continued

No formal experiment done to demonstrate 
that their system was better than other 
established systems.
For the performance evidence, there was no 
discussion of how much of a performance 
improvement there would have been if the 
compiler’s recommendations were actually 
executed.
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Evaluation continued

After paper was 
published, more data 
was gathered on bug 
discovery using Metal 
on Linux kernel.

Available at: 
http://metacomp.stanford.edu/li
nux/list.php3
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Conclusions—The Good

Best of all worlds (testing, formal specs, manual 
inspection)
Very simple to write “rules”.
Discovers a large number of bugs that could 
potentially crash the system, even with simple rules.
Problems are identified before code is even 
executed.
Flexible solution that allows for varied checks to 
security, stability, and even performance.
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Conclusions—The Bad

Situations occurred when there were false positives.
– Many of which were a result of not completely fleshing out the 

rules, in particular for more complex scenarios.
– Currently coming up with ways of easily writing code to eliminate 

these false positives.  (Heuristic algorithms to determine which
bugs are the most important bugs, for example.)

No discussion of the backgrounds of people who wrote the 
rules.

– How much domain knowledge did the rule authors have?
– How much programming ability did the rule authors have?
– More explanation of the experimental setup would have been nice.
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Related Work/History

Won Best Paper at OSDI 2000
Based on previous work called Magik.
– Much more difficult to write extensions.

Several other papers written on topic.
Ideas are now marketed as a company 
founded by Engler called Coverity.
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Related Work/History

Application-specific information in compilers—
Eraser.
Formal verification, strong type checkers.
Extensible compilers

– Ctool—Traverse the AST, look for domain-specific issues.
– Meta-object protocols—Extensions written into compiler.
– Aspect-Oriented Programming—Weave checks into existing 

code.

27

References

Engler, D. et al.  Checking System Rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI 2000.
Engler, D.  Incorporating Application Semantics and 
Control into Compilation.  IEEE Transactions on 
Software Engineering, May/June, 1999.  Vol 25, 
Number 3, 387-400.
Hallem, Seth et al.  A System and Language for 
Building System-Specific, Static Analyses, PLDI 
2002

28

Questions?

?


