
1

1

Checking System Rules Using
System-Specific, Programmer-Written

Compiler Extensions

Dawson Engler
Benjamin Chelf
Andy Chou
Seth Hallem
Stanford University

Matthew Thornton

November 9, 2005

2

Motivation

Developers of systems software have “rules”
to check for correctness or performance. (Do
X, don’t do X, do X before Y…)
Code that does not obey these “rules” will
run slow, crash the system, launch the
missiles…
Consequently, we need a systematic way of
finding as many of these bugs as we can,
preferably for as little cost as possible.

3

What Will we be Talking About?

What’s the problem?
What’s the solution?
Discuss some of the interesting details
– Assertion Checking
– Global Rule Enforcement
– FLASH Optimizations

Evaluation and conclusions
Some related work/history of the paper

4

What’s the Problem?

Current solutions all have trade-offs.
Formal Specifications-rigorous, mathematical
approach

– Finds obscure bugs, but is hard to do, expensive, and don’t
always mirror the actual written code.

Testing-systematic approach to test the actual code
– Will detect bugs, but testing a large system could require

exponential/combinatorial number of test cases. It also
doesn’t isolate where the bug is, just that a bug exists.

Manual Inspection-peer review of the code
– Peer has knowledge of whole system and semantics, but

doesn’t have the diligence of a computer.

5

What’s the Problem?

None of the current methods seem to give us what
we’re looking for.
Can the compiler check the code?

– It would be nice to put the code in the compiler and have it
check all of the “rules.”

– Unfortunately, those “rules” are based on semantics of the
system that the compiler doesn’t understand. (Lock and
Unlock are valid to the compiler, but how and when they
should be used isn’t.)

Need some technique that merges the domain
knowledge of the developer with the analysis of a
compiler.

6

What’s the Solution?

Meta-level compilation (MC) combines the
domain knowledge of developers with
analysis capabilities of a compiler.
Allows programmers to write short, simple,
system-specific checkers that take into
account unique semantics of a system.
Checkers are then added to a compiler to
check during compile-time.

2

7

What’s the Solution?

The author’s MC system uses a high-level, state-
machine language called Metal.
Metal extensions written by programmers are linked
to a compiler (xg++) that analyzes the code as it is
being compiled.

– Intra and Interprocedural analysis.

xg++source.cpp

Metal “rules”
Warnings/Errors

source.o

8

How does it work?

The language is a high-level, state-machine
language.
Two parts of the language—pattern part and state-
transition part.

– Pattern language—finds “interesting” parts of code based
on the extension the programmer writes.

– State-transition—Based on the discovered pattern, current
state, either move to a new state or raise an error.

Tests are written and then added to the xg++
compiler. Xg++ includes a base library that includes
some common, useful functions and types.

9

How does it work?

Compiler generates the AST for the program
that is being compiled.
Metal extensions are compiled into a set of
transitions.
The xg++ compiler traverses the AST for the
program in execution order in a depth-first
manner, following the transition patterns, as
they apply.

10

AST for an Assert Statement

assert(_exos_self_inser
t_pte(0,
PG_P|PG_U|PG_W,
PGROUNDDOWN(va),
0, NULL) == 0);

assert

expr

==

_exos_self_insert_pte int

expr expr

0expr expr Expr expr expr

()

11

Assertion Checking

Assertions should check a value, a state, etc.
Assertions should not change any values or
the state of the program. (ie, you should be
able to take them out of the program without
any change.)
Example that would crash if it was removed:

assert(_exos_self_insert_pte(0, PG_P|PG_U|PG_W,
PGROUNDDOWN(va), 0, NULL) == 0);

12

Assertion Checking

sm Assert flow_insensitive {

decl { any } expr, x, y, z;
decl { any_call } any_fcall;
decl { any_args } args;

start: { assert(expr); } ==>
{ mgk_expr_recurse(expr, in_assert); } ;
in_assert:
{ any_fcall(args) } ==>{ err("function

call"); }
| { x = y } ==> { err("assignment"); }
| { z++ } ==> { err("post-increment"); }
| { z-- } ==> { err("post-decrement"); } ;
}

Start

in_assert

assert(expr)

err

err

err
err

function

assi
gnment

po
st-

inc
re

men
t

po
st

-d
ec

re
m

en
t

Other
structuresVariable Declarations—

”any” symbolizes a hole
type, with self-
explanatory names.

State Transitions:
Given current state, if
you see the given
pattern, execute what
is after the ==>
(Typically an error
message or a state
transition.)

3

13

Global Rule Checking

Many rules apply globally across function call
chains.
Example: Rules that are expressed in terms
of blocking functions, such as certain types of
deadlock.
xg++ provides mechanisms for gathering
“global” data and then applying it to a xg++
extension.

14

Global Rule Checking—Checking for
Deadlock

“Kernel code cannot call blocking functions with
interrupts disabled or while holding a spin lock.
Violating this rule can lead to deadlock.”
We need to include a rule that will handle this rule.

– Unfortunately, when executing a rule like this, we need to
know what function calls can result in a call to a blocking
function.

Solution: Use Global Rule Checking

15

Global Rule Checking—Checking for
Deadlock

Compiler’s 2 passes generate a call graph.
– First pass uses a Metal extension to find those functions

that potentially block, tags those functions in the resulting
call graph.

– Second pass links all files sent to xg++ into a large call
graph, does a depth-first traversal to find all functions that
have a path to a blocking function. Generates a listing of
these functions.

Now, we can execute a localized rule within the
context of these blocking functions.

16

Global Rule Checking—Checking for
Deadlock

With the list of blocking
functions available, a second
extension is run through the
program code.
Rules include detecting when
spin locks are enabled/disabled
or when interrupts are
enabled/disabled.
When in the state where locks
are enabled or interrupts are
disabled, a blocking function
cannot be called because it can
cause deadlock in the Linux
implementation.

Clean Interrupts,
Locked

No Interrupts, not Locked

No Interrupts, Locked

err

+/-
Interrupts

+/- lock

+/-
Interrupts

+/- lock

Function call
that can
block

Function call
that can block

17

New, Improved Global Rule Checking

Global Rule Checking was formalized in later version
of Metal.
Two Passes

– First Pass: Each file being compiled has a temporary AST
generated for it.

– Second Pass: Reads temporary files to reconstruct the
ASTs for entire program, control-flow graph is generated to
trace the execution through multiple files. (Functions that
aren’t called are the roots of the trees.)

Metal extensions are then run on the AST in depth-
first manner based on the control-flow graph that is
generated.

18

FLASH Optimizations

Not only can you detect software bugs, it should be
obvious that any types of rules can be enforced
using this code, including performance-enhancing
rules.
Example: FLASH Hardware/Software

– Code for FLASH must be fast because it implements
functionality usually in hardware.

– Been aggressively optimized for many years, but MC still is
able to provide hundreds of optimizations, because it’s hard
to manually traverse deeply nested control paths.

4

19

FLASH Optimizations

Buffer-free optimizations
– Traces send calls. Detects if a buffer is needed and if the

send frees the buffer.
Redundant length assignments

– It can be difficult down deep nesting paths to remember if a
length field for a buffer has already been set.

– Metal allows for such a scan.
Efficient opcode setting

– Scan to see if the message header has a known opcode
already there. If so, recommend XOR’ing with the desired
opcode. (Reduces assembly instructions to 1.)

20

Evaluation

Anecdotal evidence throughout the paper demonstrating that
MC discovers a large number of bugs.

– Ran tests on FLASH’s cache coherence code, as well as versions
of Linux.

– In both cases, the rule extensions that were run found bugs that
could have potentially crashed the system.

– In one case, there was a bug that was detected that would have
required the tester to look through 300 lines of code, 20 if-
statements, 4 else clauses, and 29 conditional compilations.

The large number of bugs is magnified by the fact that the rules
for finding the bugs were written in few lines of code (<100, in
most cases.)

21

Evaluation continued

No formal experiment done to demonstrate
that their system was better than other
established systems.
For the performance evidence, there was no
discussion of how much of a performance
improvement there would have been if the
compiler’s recommendations were actually
executed.

22

Evaluation continued

After paper was
published, more data
was gathered on bug
discovery using Metal
on Linux kernel.

Available at:
http://metacomp.stanford.edu/li
nux/list.php3

23

Conclusions—The Good

Best of all worlds (testing, formal specs, manual
inspection)
Very simple to write “rules”.
Discovers a large number of bugs that could
potentially crash the system, even with simple rules.
Problems are identified before code is even
executed.
Flexible solution that allows for varied checks to
security, stability, and even performance.

24

Conclusions—The Bad

Situations occurred when there were false positives.
– Many of which were a result of not completely fleshing out the

rules, in particular for more complex scenarios.
– Currently coming up with ways of easily writing code to eliminate

these false positives. (Heuristic algorithms to determine which
bugs are the most important bugs, for example.)

No discussion of the backgrounds of people who wrote the
rules.

– How much domain knowledge did the rule authors have?
– How much programming ability did the rule authors have?
– More explanation of the experimental setup would have been nice.

5

25

Related Work/History

Won Best Paper at OSDI 2000
Based on previous work called Magik.
– Much more difficult to write extensions.

Several other papers written on topic.
Ideas are now marketed as a company
founded by Engler called Coverity.

26

Related Work/History

Application-specific information in compilers—
Eraser.
Formal verification, strong type checkers.
Extensible compilers

– Ctool—Traverse the AST, look for domain-specific issues.
– Meta-object protocols—Extensions written into compiler.
– Aspect-Oriented Programming—Weave checks into existing

code.

27

References

Engler, D. et al. Checking System Rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI 2000.
Engler, D. Incorporating Application Semantics and
Control into Compilation. IEEE Transactions on
Software Engineering, May/June, 1999. Vol 25,
Number 3, 387-400.
Hallem, Seth et al. A System and Language for
Building System-Specific, Static Analyses, PLDI
2002

28

Questions?

?

