
Because the original of the following paper by Lauer and Needham is not
widely available, we are reprinting it here. If the paper is referenced
in published work, the citation should read: "Lauer, H.C., Needham, R.M.,
"On the Duality of Operating Systems Structures," in Proc. Second Inter-
national Symposium on Operating Systems, IRIA, Oct. 1978, reprinted in
Operating Systems Review, 13,2 April 1979, pp. 3-19.

On the Duality of Operating System Structures

Hugh C. Lauer
Xerox Corporation

Palo Alto, California

Roger M. Needham*
Cambridge University
Cambridge, England

Abstract

Many operating system designs can be placed into one of two very rough
categories, depending upon how they implement and use the notions of
process and synchronization. One category, the "Message-oriented System,"
is characterized by a relatively small, static number of processes with an
explicit message system for communicating among them. The other category,
the "Procedure-oriented System," is characterized by a large, rapidly
changing number of small processes and a process synchronization
mechanism based on shared data.

In this paper, it is demonstrated that these two categories are duals of each
other and that a system which is constructed according to one model has a
direct counterpart in the other. The principal conclusion is that neither model
is inherently preferable, and the main consideration for choosing between
them is the nature of the machine architecture upon which the system is
being built, not the application which the system will ultimately support.

This is an empirical paper, in the sense of empirical studies in the natural sciences. We have

observed a number of samples from a class of objects and identified a classification of some of

their properties. We have then generalized our classification and constructed abstract models to

describe these properties. With the aid of these models, we were able to make some observations

about the nature of the objects themselves, observations which are supported by other experimental

evidence. Finally, we have drawn some conclusions about the class of objects which better aid our

understanding of that class and the decisions which affect the design of members of that class.

The universe in this investigation is the class of operating systems, and the properties in which we

are interested are the ways in which the concepts of process, synchronization, and interprocess

communication occur within these systems and among their clients. There appear to be two

general categories in this respect, which we designate the Message-oriented Systems and the

Procedure-oriented Systems. Most systems which we have observed tend to be biased fairy

strongly in favour of one or the other, rather than being neutral or indeterminate. Moreover,

* This work was done while the author was on sabbatical leave at the Xerox Pale Alto Research Center during
the summer of 1977. 3

H. C. LAUER AND R. M. NEEDttAM

within each of the categories, the systems tend to be more like each other than like systems of the

other category. Finally, in several design efforts in which either of us have participated or

observed first-hand, attempts to combine fundamental characteristics from the two categories have

met with failure or have been abandonned.

To characterise our classifications, we have constructed a canonical model for each category. The

message-oriented model is characterised by a small, relatively static number of big processes, an

explicit set of message channels between them, a relatively limited amount of direct sharing of data

in memory, and an identification of address space or context with processes. The procedure-

oriented model is characterized by a large number of very small processes, rapid creation and

deletion of processes, communication by means of direct sharing and interlocking of data in

memory, and identification of the context of execution with the function being executed rather

than with the process. These two models define two differents kinds of primitive operations for

managing processes and synchronization in an operating system. From them, we will derive three

observations:

1. The two models are duals of each other. That is, a program or subsystem constructed
strictly according to the primitives defined by one model can be mapped directly
into a dual program or subsystem which fits the other model.

2. The dual programs or subsystems are logically identical to each other. They can also be
made textually very similar, differing only in non-essential details.

3. The performance of a program or subsystem from one model, as reflected by its queue
lengths, waiting times, service rates, etc. is identical to that of its dual system,
given identical scheduling strategies. Furthermore, the primitive operations
provided by the operating system of one model can be made as efficient as their
duals of the other model.

The principal conclusion we will draw from these observations is that the considerations for

choosing which model to adopt in a given system are not found in the applications which that

system is meant to support. Instead, they lie in the substrate upon which the system is built and

are a function of which set of primitive operations and mechanisms are easier to build or better

suited to the constraints imposed by the machine architecture and hardware.

In the remainder of the paper, we develop the canonical models in greater detail. We then present

the three observations, our reasons for believing them, and some empirical support for them.

Finally, we discuss the consequences and conclusions which we derived from this point of view.

Two Models

It is not helpful in this paper to develop an elaborate formalism defining the two canonical models

for our categories of operating systems. Instead, we will describe these in informal English,

outlining the characteristics of each in familiar terms. Similarly, our observations will be based on

4

ON THE DUALITY OF OPERATING SYSTEM STRUCTURES

informal arguments about the models, not on formal, rigourous proofs.

An important caveat to bear in mind is that these models bear roughly the same relationshiro to

reality as, for example, the postulate of frictionless surfaces does to reality in physics. That is, no

real system precisely agrees with either model in all respects. Furthermore, most operating systems

typically have some subsystems which behave like one and other subsystems which behave like the

other. Thus the observations which we will make apply only to our models, and our conclusions

will describe a real system only to the same degree that that system corresponds to one or the

other of the models.

However, we believe and have observed that the models are reasonable in the sense that most

modern operating systems can be usefully classified using them. Some systems are implemented in

a style which is very close in spirit to one model or the other. Other systems are able to be

partitioned into subsystems, each of which corresponds to one of the models, and which are

coupled by explicit interface mechanisms. Most of the remaining systems are so ill-structured and

unstable (for example, the ratio of bits, operations, and/or interfaces to information content is

much too high) that they are unreliable, unmanageable, uneconomic, and unusable.

Message-oriented System

At the level of mechanism, this kind of system is characterized by facilities for passing messages

(or events, or whatever they might be called in a particular system) easily and efficiently among

processes. There also convenient facilities for queuing messages at destination processes until they

can be acted upon. Processes are provided with primitive operations to send messages, wait for

any message, wait for a particular class of message, and examine the state of the message queue.

Pre-emption of the processor occurs when a message arrives at a 'higher priority' process which is

waiting for a message of that kind.

Some of the hallmarks of successful systems designed according to this model are the following.

Specific communication paths (i.e., message channels, ports, sockets, or other means of
identifying classes of messages) are established for specific forms of communication
between particular pairs of processes. This binding typically persists for relatively long
periods, and is often done when the system is initialized.

The number of processes and the connections between them remain relatively static.
Deletion of processes tends to be very difficult because of the possibility of an arbitrary
number of queued messages awaiting response. Creating processes and changing
connections can be correspondingly difficult.

Each process tends to operate in a relatively static context. Virtual memories or address
spaces are usually placed in one-to-one correspondence with processes. Processes rarely
cross protection boundaries (except to briefly enter the executive or kernel), and they
rarely share data in memory.

5

H. C. LAUER AND R. M. NEEDHAM

As a result, processes tend It be assoc&ted with system resources, and the needs o f
applications which the system exists to serve are encoded into data to be passed around in
messages.

This style of system architecture is most common in the world of real-time systems and process

control, where frequently the applications themselves are encoded in message blocks denoting

transactions. However, there are also a number of general purpose operating systems implemented

in this way, including, for example, IBM's OS/36011]. The most elegant example of a message-

oriented system is the GEC 4080[2].

In this style of system, a number of characteristics tend to emerge as natural consequences of good

design practice:

Synchronization among processes and queuing for congested resources is implemented in
the message queues attached to the processes associated with those resources.

Data structures which must be manipulated by more than one process are passed (by
reference) in messages. No process touches the data unless it is currently processing a
message referring to it, and a process does not continue to manipulate the data after it has
passed it on in a message to another process.

Peripheral devices are treated as processes (or virtual processes). Control of a device often
resembles sending a message to that device, and an 'interrupt' from the device is manifest
as a message to some other process.

Priorities tend to be statically assigned to processes at the time the system is designed, and
they correspond to the timing needs of the resources being managed.

Processes operate upon one or a very small number of messages at a time and normally
complete those operations before looking at the message queues again.

Because processes operate in static contexts, neither procedural interfaces no global naming
schemes are very useful.

Our canonical model is, therefore, and idealized operating system kernel and/or programming

environment which provides the following facilities:

Messages and message identifiers. A message is a data structure meant for sending
information from one process to another, it typically contains a small, fixed area for data
which is passed by value and space for a pointer to larger data structures which must be
passed by reference. A message identifier is a handle by which a particular message can be
identified.

Message channels and message ports. A message channel is an abstract structure which
identifies the destination of a message. A message port is queue capable of holding
messages of a certain class or type which might be received by a particular process. Each
message channel must be bound to a particular message port before is can be used. A
message port, however, may have more than one message channel bound to it.

Four message transmission operations:

SenflMessage[messageChannel, messageBofly] returns [messageIfl] -- This operation
simply queues a new message on the port bound to the the
messageChannel named as parameter. The messageId returned is used as
parameter to the following operation.

6

ON THE DUALITY OF OPERATING SYSTEM STRUCTURES

AwaitReply[messageld] returns [messageBody] -- The operation causes the process
to wait for a reply to a specific message previously sent via SendMessage.

WaitForMessage[set of messagePort] returns [messageBody, messageld,
messagePort] -- This operation allows a process to wait for a new
(unsolicited) message on any one of the message ports named in the
parameter. The message which is first on the queue is returned, along
with a message identifier for future reference and an indication of the port
from which that message came.

SendReply[messageld, messageBody] -- This operation sends a reply to the
particular message identified by the message identifier.

Process declarations. A process (or more precisely, a process template) consists of local data
and algorithms, defines certain message ports, and refers to (i.e., sends messages to) certain
message channels representing other processes.

The operation CreateProcess. This operation creates (an instance of) a process which has
been previously declared, and binds the message channels it references to message ports of
previously existing processes. Note that because of the binding, this operation is rather
cumbersome and should not be used extravigantly. (No DeleteProeess operation is
provided in our model, because it would be messy and not important.)

Finally, our canonical model for the message-oriented system suggests a standard way,

characterised by the program outline below, for implementing a simple resource manager using

these primitive system operations. It consists of a single process containing local data to represent

the state information necessary for managing that resource and a loop which waits for a request

from any of a set of ports, then services that request.

begin m: messageBody;
i: messageld;
p: portld;
s: set ofportld;
. . . --local data and state information for this process

initialize;

do forever;
[m, i, p] ~- WaitForMessage[s];
case p of

port1 = > . . . ; --algorithm for poR1
port2 = > . . .

if resourceExhausted then
s ,- s - port2;

SendReply[i, reply];
. . . ; --algorithm for port2

pork : > .
s ,- s + port2
. . . ; --algorithm for p o r k

endcase;
endioop;

end.

In this process, the kind of service requested is a function of which port the requesting message

arrives on. It may or may not involve making requests of still other processes and/or sending a

7

H. C. LAUER AND R. M. NEEDHAM

reply back to the requestor. It may also result in some circumstance, such as the exhaustion of a

resource, which prevents further requests from being considered. These remain queued on their

port until later, when the process is willing to listen on that port again.

Note that if a whole system is built according to this style, then the sole means of interaction

among the components of that system is by means of the message facility. Each process can

operate in its own address space without interference from the others. Because of the serial way in

which requests are handled, there is never any need to protect the state information of a process

from multiple, simultaneous access and updating.

Procedure-oriented System

At the level of mechanism, this kind of system is characterized by a protection and addressing

mechanism oriented toward procedures and efficient procedure call facilities which can take a

process very rapidly from one context to another. Cooperation among processes is achieved by

some form of locks, semaphores, monitors, or other synchronizing data structures (we will use the

term lock as a generic identification of these). In this kind of system, a process attempts to claim a

lock, and may be forced to wait on a queue until some other process releases it. Pre-emption of

the processor occurs when a release operation is performed on a lock which a 'higher priority'

process is attempting to claim.

Some of the hallmarks of successful system design in this environment are the following:

Global data can be both protected and efficiently accessed by providing procedural
interfaces which do all of the synchronization and manipulation in controlled ways.

Process creation is very easy since no communication channels have to be set up with
existing processes; deletion of a process is correspondingly easy so long as it is not holding
any locks.

A process typically has only one goal or task, but it wanders all over the system (by means
of calling procedures to enter different contexts) in order to get that thing done.

As a result, the system resources tend to be encoded in common or global data structures and
the applications are associated with processes whose needs are encoded in calls to system-
provided procedures which access this data.

This style is characteristics of a wide variety of designs, including HYDRA[3], the Plessey System

250[4], and others.

Some of the characteristics of systems which result from this viewpoint are the following:

Synchronization of processes and queuing for congested resources occurs in the form of
queues o f processes waiting for locks associated with the corresponding data structures.

Data is shared directly among processes, and processes tend to lock only small parts of the
data structures for relatively short periods of time.

ON THE DUALITY OF OPERATING SYSTEM STRUCTURES

Control of and 'interrupts' from peripheral devices take the form of manipulating locks
and/or shared data in memory.

Processes inherit their priorities dynamically from the contexts in which they execute;
priorities are associated with the locks or data structures and correspond to the timing
requirements of the resources they represent.

Global naming schemes are an important feature in optimizing the context switching, and
the contexts represent an import form of protection.

Our canonical model for a procedure-oriented system is an operating system kernel and/or a

programming environment which provides the following facilities, which we describe as

hypothetical extensions to Mesa, a Pascal-like language developed at Xerox[5]:

Procedures. A procedure is a piece of Mesa text containing algorithms, local data,
parameters, and results. It always operates in the scope of a Mesa module and may access
any global data declared in that module (as well as in any containing procedures).

Procedure call facilities, synchronous and asynchronous. The synchronous procedure call
mechanism is just the ordinary Mesa procedure call statement, which may return results.
This is very much like procedure or function calls in Algol, Pascal, etc. The asynchronous
procedure call mechanism is represented by the FORK and JOiN statements, which are
defined as follows:

processld <- FORK p r o c e d u r e N a m e [p a r a m e t e r L i s t] -- This statement starts
the procedure executing as a new process with its own parameters. The
procedure operates in the context of its declaration, just as if it had been
called synchronously, but the process has its own call stack and state. The
calling process continues executing from the statement following the
FORK. The process identifier returned from FORK is used in the next
statement_

[r e su l tL i s t] ,,- JOaN p r o e a s s l d -- This statement causes the process executing it
to synchronize itself with the termination of the process named by the
process identifier. The results are retrieved from that process and
returned to the calling process as if they had been returned from an
ordinary procedure call. The JOINed process is then destroyed and
execution continues in the JOINing process from the statement following
the JOIN.

Modules and monitors. A module is the primitive Mesa unit of compilation and consists
of a collection of procedures and data. The scope rules of the language determine which
of these procedures and data are accessible or callable from outside the module. A
monitor is a special kind of Mesa module which has associated with it a lock to prevent
more than one process from executing inside of it at any one time. It is based on and
very similar to the monitor mechanism described by Hoare[6].

Module instantiation. Modules (including monitor modules) may be instantiated in Mesa
by means of the NEW and START statements. These cause a new context to be created for
holding the module data, provide the binding from external procedure references within
the module to procedures declared in other modules, and activate the initialization code o f
the module.

Condition variables. Condition variables are part of Hoare's monitor mechanism an
provide more flexible synchronization among events than mutual exclusion facility of the
monitor lock or the process termination facility of the JOIN statement. In our model, a
condition variable, must be contained within a monitor, has associated with it a queue of
processes, and has two operations defined on it:

H. C. LAUER AND R. M. NEEDHAM

WAIT c o n d i t i o n V a r i a b l e -- This causes the process executing it to release the
monitor lock, suspend execution, and join the queue associated with that
condition variable.

SIGNAL c o n d i t i o n V a r i a b l e -- This causes a process which has previously
WAiTed on the condition variable to resume execution from its next
statement when it is able to reclaim the monitor lock.

Note that because the FORK and JOIN operations apply to procedures which are already declared

and bound to the right context, these operations take the same order of magnitude of time to

execute as do simple procedure calls and returns. Thus processes are very lightweight, and can be

created and destroyed very frequently. Module and monitor instantiation, on the other hand, is

more cumbersome and is usually done statically before the system is started. Note that this

canonical model has no module deletion facility.

As we did for the previous model, we can define a standard style of simple resource manager for

the procedure-oriented system. This is characterised by the program outline below. It consists of

a monitor containing global data representing the state information for the resource, plus a number

of procedure declarations representing the different services offered.

ResourceManager: MONITOR =

C: CONDITION;
resou rceExhausted: BOOLEAN;
• . . --global data and state information for this process

procl : ENTRY PROCEDURE[. • .] =
• . . ; --algorithm for procl

proc2: ENTRY PROCEDURE[. . .] RETURNS[• . .] =
BEGIN

IF r e s o u rceExhausted THEN WAIT C;

RE;URN[results];
. ° • ;

END; --algorithm for proc2

• , •

procL: ENTRY P R O C E D U R E [. . .] =
BEGIN

• = • ;

resou rceExhausted , - FALSE;
SIGNAL C ;
. . = ;

END; --algorithm for procL
endloop;

initialize;
END,

The attribute ENTRY is used to distinguish procedures which are called from outside the monitor,

thus seizing the monitor lock, from those which are declared purely internal to the monitor. Any

l 0

ON THE DUALITY OF OPERATING SYSTEM STRUCTURES

of the procedures in this module may, of course, call procedures declared in other modules for

other system services before returning. Within the monitor, condition variables are used to control

waiting for circumstances such as the availability of resources. These are used in this standard

resource manager to control the access of a process the procedure representing a particular kind of

service.

If a whole system is built in this style, then the sole means of interaction among its components is

procedural. Processes move from one context to another by means of the procedure call facility

across module boundaries, and they use asynchronous calls to stimulate concurrent activity. They

depend upon monitor locks and condition variables to keep out of the way of each other. Thus no

process can be associated with a single address space unless that space be the whole system.

Characteristics of the Models

The importance of these rather idealized models is that we can show that the two styles of system

design are duals of each other. We will show how a program for one kind of system can be

mapped into a program appropriate for the other. We will also show that as a result o f this

mapping, the logic of the programs in the dual systems is invariant. Finally, we will argue that the

performance of the system can be preserved across the mapping. It should be noted that our

transformation is not the naive technique of simulating one set of primitives in terms of the other.

Instead, it is a direct transformation on the programs themselves, exchanging the primitive

operations and data structures of one style for those of the other.

The Duality Mapping

The mapping is derived from the following correspondence between the basic system facilities and

canonical styles for resource managers:

11

H. C. LAUER AND R. M. NEEDHAM

Message-oriented system

Processes, CreateProcess

Message Channels

Message Ports

SendMessage; AwaitReply
(immediate)

SendMessage;... AwaitReply
(delayed)

SendReply

main loop of standard resource
manager, WaitForMessage statement,
case statement

arms of the case statement

selective waiting for messages

Procedu re-orien ted system

Monitors, NEW/START

External Procedure identifiers

ENTRY procedure identifiers

simple procedure call

FORK; . . . JOIN

RETURN (from procedure)

monitor lock, ENTRY attribute

ENTRY procedure declarations

condition variables, WAIT, SIGNAL

That is, the facilities on the left serve the same purpose in the message-oriented system as do the

ones opposite them in the procedure-oriented system. For example, a SendMessage operation

followed by an AwaitReply operation some time later is used by message system clients where a

procedure system client would use FORK and JOIN.

The most interesting correspondence is between the processes of the one system and the monitors

of the other. In particular, in the canonical style of resource manager, the arms of the case

statement in the message-oriented model correspond to the ENTRY procedure declarations in the

other. The code representing the main loop of the process, with its WaitForMessage, and case

statement performs exactly the same function as the mutual exclusion lock on the monitor, namely

that of serializing the requests for service and admitting only one at a time. The case statement

itself sorts out which service is requested in the same way as the different procedure names do in

the monitor.

Similarity of Programs

This forms the basis of the duality mapping. If a client system or subsystem is written in the strict

style of one of our standard resource managers, then it can be transformed directly into the other

kind of system by replacing each construct with its corresponding one. For example, each monitor

is replaced with a process declaration containing a main loop in the style we suggested. All

synchronous and asynchronous procedure calls are replaced by SendMessage and AwaitReply
operations, and returns from procedures are replaced by SendReply operations. The use of

condition variables for managing the synchronization of events is replaced by carefully selected

waiting for messages. This transformation can, of course, be applied in either direction.

12

ON THE DUALITY OF OPERATING SYSTEM STRUCTURES

Note that by applying the transformation, we do not affect the logic of the client programs at all. In

fact, none of their interesting parts are touched or even rearranged (except for the initialization

code of each resource manager, which by tradition appears after the procedure declarations in the

monitor but before the main loop in the process). No algorithms are changed; no data structures

are replaced; no interface strategies are affected. Only the actual text representing the interactions

between client system components is modified, and this is only to reflect the 'syntactic' details of

the primitive facilities of the other kind of system. The semantic content is invariant.

This simplistic mapping between the two types of systems does not work if the systems being

transformed do not adhere to the strict style we postulated. If a real system implements process or

synchronization facilities which are very different from those of our canonical model, then the

transformation must be extended and/or may not make sense. Similarly, if resource managers or

users of resources are designed in a grossly different way, even though they use the same primitive

operations, the transformation may produce a very contrived or awkward program structure. This

raises an interesting question, to which we have no definite answer:

If a primitive operation, process facility, or programming style is proposed for a system
which fits into one of our two broad categories, and if no reasonable counterpart for it can
be found in the other category, is it a good thing? That is, would a style or mechanism
which has no dual be considered a truly well-structured construct which is elegant in form
and rich in semantic contenff Or would it be considered an overimaginative, ungainly
feature which is awkward to program and hard to understand?

For example, the WAIT statement in the procedure-oriented model provides a considerably richer

synchronization facility than does selective waiting for messages in the message-oriented model. In

particular, a process may WAtT anywhere within the ENTRY procedure or any other monitor

procedure called by it, not just at the beginning as we have suggested in the canonical style.

However, this is not without its disadvantages. The procedure which WAITS must ensure that the

monitor invariant is true, even though it might be deep inside an inner block o f an inner

procedure and may have captured all sorts of monitor information and temporary results in its

local variables, results which could easily be invalidated by another process entering the monitor.

In this sense, the WAIT statement is almost as ill-structured as the notorious 'go to' statement.

Perhaps, it should be confined to, say, the entry and exit points of an ENTRY procedure for more

clarity.

One final observation with respect to the invariance of programs under the duality mapping: It is

possible to imagine embedding the primitive synchronization and process facilities of the message-

oriented system in a strongly-typed language such as Mesa. Furthermore, if we accept that the

main loop of the canonical resource manager, the WaitForMessage operation, and the ease

statement are fundamental parts of the programming style, then they can be absorbed into the

linguistic unit representing a process (so that a process declaration consists of some global data,

and a set of actions to associate with each message port). Finally, we can make the sending of

13

H. C. LAI_JER AND R. M. NEEDHAM

messages look syntactically like calling or FORKing procedures, with the full typechecking facilities

of the language applied to message bodies just as we apply it now to parameter and result lists.

Then if we consider a system built according to the canonical style in this environment, we see that

its dual is textually identical except for the spelling of certain keywords of the language.

Preservation of Performance

Our canonical models and standard styles for implementing resource managers suggest that there is

another property which is invariant under the duality mapping, namely the performance of the

client system. If we take due care in the implementation of the primitive operations of the two

operating system kernels (and if we assume similar processor characteristics and peripheral

devices), then a system of programs built in terms of one will have the same execution

characteristics as its dual system built in terms of the other. To understand this, observe that there

are three components of the dynamic behaviour of a system of programs:

the execution times of the programs themselves,

the computational overhead of the of the primitive system operations they call, and

the queuing and waiting times which reflect the congestion and sharing of resources,
dependence upon external events, and scheduling decisions.

The duality transformation leaves the main bodies of the programs comprising the system

untouched. Thus the algorithms will all compute at the same speed, and the same amount of

information will be stored in each data structure. The same amount of client code will be

executed in each of the dual systems. The same number of additions, multiplications, comparisons,

and string operations will be performed. Therefore if basic processor characteristics are

unchanged, then these will take precisely the same amount of computing power, and this

component of the system performance will remain unchanged.

The other component affecting the speed of execution of a single program is the time it takes to

execute each of the primitive system operations it calls. We assert without proof that the facilities

of each of our two canonical models can be made to execute as efficiently as the corresponding

facilities of the other model. I.e.,

Sending a message, with its inherent need to allocate a message block and manipulate a
queue and its possibility of forcing a context (process) switch, is a computation of the same
complexity as that of calling or FORKing tO an EN'rR¥ procedure, which involves the same
need to allocate, queue, and force a context switch,

Leaving a monitor, with the possibility o f having to unqueue a waiting process and re-
enter it, is an operation of the same complexity as that of waiting for new messages.

Process switching can be made equally fast in either system, and for similar machine
architectures this means saving the same amount of state information. The same is true
for the scheduling and dispatching of processes at the 'microscopic' level.

14

ON THE DUALITY OF OPERATING SYSTEM STRUCTURES

Virtual memory and paging or swapping can even be used with equal effectiveness in
either model.

As evidence for this belief, we cite the GEC 408012], in which message queuing, process switching,

and dispatching are implemented as fast operations in microcode, and an implementation of the

Mesa system in which the dual operations are also implemented in microcode with Similar speed.

In general, we have observed that a message-oriented operating system kernel implemented by a

dedicated team on a friendly machine architecture can be made very efficient relative to the basic

cycle time of that machine. But we have also observed that the same is true f o r a procedure-

oriented system if the machine architecture is appropriate for that. We can find no inherent

differences in the two approaches.

Note that it is also possible to make the basic operations of the two models behave identically with

respect to the scheduling and dispatching of client processes. That is, if the message system

implements a particular discipline for queuing and unqueuing messages, then the procedure-

oriented system can implement exactly the same discipline for its queuing and unqueuing of

processes. Similarly, if one system forces a context switch in a particular circumstance, either as a

result of a kernel operation or a pre-emption due to an external event, then the other model can

do exactly the same in response to the dual circumstance. Thus, not only will operations happen

just as quickly in one model as in the other, but corresponding events will happen in the same

order.

This means that the third component affecting the performance of a suite of programs -- namely

the way in which the executions of those programs interact with others -- is also invariant under

the duality transformation, assuming that the two previous components are. Each message between

processes (or between a process and a device) in the message-oriented system corresponds in the

other system to a call to or return from a synchronous or asynchronous ENTRY procedure. If the

message has to be queued because t h e destination process is not ready to receive it, then the

procedure call will also be queued at its monitor, WAiT statement, or JOiN statement for the same

length of time. The same external events will cause the congestion of a resource manager (either

process or monitor) to be relieved at the same time. The peripheral devices will exhibit the same

behaviour with respect to such issues as latency, response time, transfer times, etc., and thus the

processes waiting for them to complete will wait just as long. Furthermore, the scheduling and

dispatching can be arranged so that the same number of context switches, allocations of message

blocks or local frames, etc., take place whether it is a message- or procedure-oriented system.

From these arguments, we claim that the total lifetime of a computation is the same for the two

models, as is the juxtaposition of that lifetime with respect the lifetimes of other computations. In

the procedure-oriented model, the computation corresponds to a process with its call stack. During

its life, it wanders through the system, occasionally executing code, occasionally waiting in queues,

15

H. C. LAUER AND R. M. NEEDHAM

always crossing context boundaries by means of procedure calls and returns. But in the message-

oriented model, the computation is represented only partly by the execution of code and partly by

the transmission of messages. It also wanders through the system, occasionally executing the code

of some process but always taking the form of a message when it crosses context boundaries or

waits in queues.

Empirical Support

For accidental reasons, it is not very easy to change the structure of most operating systems in a

way which would reflect the duality we suggest. The underlying addressing structures, use of

global data, and styles of communication are usually so bound to the design and implementation

that performing the transformation to a dual version would be a major exercise, not justified by

the second order gains. Accordingly, there is not much evidence of example which can be quoted

in support of our thesis.

However, one case can be cited, namely the Cambridge CAP Computer [7]. This system has a

structure which leads to the complete addressing encapsulation of each system module, and to an

operating system in which each module is implemented as a complete program (normally

Algo168C). It was a basic design principle that any system data structure be managed by a single

module (or protected procedure, in CAP terminology). An instance of such a procedure might be

found in many or all of the processes in the system. Though this design approach was adopted for

quite independent reasons, it turned out to facilitate just the kind of restructuring which we are

discussing in this paper.

For example, the original design had a process which was devoted to the management of system

internal names, which constituted a sort of central file directory referenced by all ordinary

directories. This process was activated by messages to recover details of particular filed objects and

to increment or decrement their reference counts. It was noticed that the message system was

rather expensive, and accordingly the management program was incorporated in each process as a

protected procedure. The text of the program hardly had to be changed at all, and the changes

which were made were trivial. Partly as a result of this observation, a programming style was

adopted for the rest of the operating system with a view to facilitating similar rearrangements later

[8]. This turned out to be strikingly similar to the abstract models of this paper.

The ease of rearrangement of the CAP system was a consequence of a programming style

originally adopted because of the protection structure of the machine, but there seems little reason

to doubt that similar conventions could be adopted without loss in a more ordinary computer. B.

J. Stroustrup has made some proposals in [9] which are relevant here.

3.6

ON THE DUALITY OF OPERATING SYSTEM STRUCTURES

Underlying Differences between Styles

The conclusion which we can draw from our canonical models and the observations we made

about them is that there is no inherent difference between the two styles of system design or the

programs that use them. That is, the two styles lead to client systems with similar program

structure and performance (a "zeroth-order" consideration). Furthermore, the computational

complexity of the implementations of the system facilities to provide the two styles is similar (a

"first-order" consideration). Thus the basis for preferring one style to the other must be found in

some second- or higher-order consideration. It must be two or more steps removed from the

primary consideration of the designer of the application of the system. We believe that this basis

is in the nature of the substrate -- i.e., machine architecture and/or programming environment --

on which the process and synchronization facilities are implemented. The factors and design

decisions of the system upon which the process and synchronization facilities are built are the

things which make one or the other style more attractive or more tedious.

Thus on one machine, the notion of process may be intimately tied to that of virtual memory, and

it may be easy to allocate message blocks and queue messages, but very difficult to to build a

protected procedure call mechanism. In this case, a message-oriented style is probably the best.

On another system with an Algol-like stack and block structured allocation, the procedure-oriented

model is probably more suitable. Other such factors include the organization of real and Virtual

memory, the size of the stateword which must be saved on every context switch, the ease with

which scheduling and dispatching can be done, the arrangement of peripheral devices and

interrupts, and the architecture of the instruction set and the programmable registers. These are

usually chosen or constrained before the design of any application (or even the operating system

kernel) is contemplated. It is rare that the operating system designer has a great influence on these

factors and even rarer that he has complete control over them. Thus he normally faced with

having to build the most reasonable set of primitives he can without incurring large computational

penalties in the most basic operations of his system.

If this is the case, then the arguments about processes and synchronization which are often found

in the corridors of organizations actively designing a new system (and which occasionally find their

way into the literature) take on a decidedly non-technical tone. In our experience, they tend to be

highly emotional, they consume far more energy than any other part of the system, they

occasionally lead to organizational difficulties, and they are about issues which this analysis

suggests are irrelevant. They are characterised by someone representing one style as being unable

to reconcile the system organization postulated by the other style with the limitations and

constraints he has learned by analysis or bitter experience, and by a mutual feeling on the other

side. Part of the problem is that the the common notion of process evokes wildly different

implications in the two worlds, which we have shown is indeed the case. The result of such

arguments is rarely an understanding of the equivalence of the two approaches, but rather an

17

H. C. LAUER AND R. M. NEEDHAM

unpleasant compromise for all involved.

Conclusions

Our analysis is likely to be controversial. Like those of any empirical science, our conclusions

cannot be accepted without a lot of thought and supporting experiments. We have found that the

duality between the two categories of system design is a notion which defies belief amongst a non-

trivial sample of our colleagues. ~Ihe observations about the similarity of program logic, code, and

performance are particularly hard to accept when the universe of discourse is not one of naturally

occurring objects but man-made ones. Time will tell whether they are correct.

We have several objectives in developing this analysis. First, we want to eliminate some of the

uninformed controversy about which kinds of systems are "better" to build. We find merit in both

styles, with respect to structure, performance, logical soundness, elegance, and "correctness."

Second, we are able to eliminate several degrees of freedom in the design process, thus allowing

the design of better, more consistent, more reliable systems at lower cost. Once a choice is made

between the two styles, many of the properties of "good" system design follow naturally. It is no

longer necessary to make separate, independent choices about related issues, with the risk of

introducing some fundamental incompatibility which will not be perceived until too late after the

system starts to operate. Finally, we remark that the equivalence between the two styles of system

design suggests that it might be possible to devise a uniform way of modelling the interactions

between system components, whether by messages or by procedures, in order to derive better

means of calculating the system performance before it is designed instead of after.

Acknowledgements

We are indebted to Michael MeUiar-Smith for many fruitful discussions on this subject and, in

particular, for his observation that the application programs for two dual systems are, in general,

identical. We are also grateful to our colleagues at the Xerox Palo Alto Research Center and

System Development Division for their long, loud, and often emotional and heated debates on

what kind of process mechanism to include in the Mesa language and system -- debates which

created the necessity to perform this analysis and show the equivalence of the two approaches,

thereby permitting a purely technical resolution of that issue.

18

ON THE DUALITY OF OPERATING SYSTEM STRUCTURES

References

1. IBM Corporation, Operating System/360: Concepts and Facilites, Poughkeepsie, New York.

2. General Electric Company (Marconi-Elliot Division), Borehamwood, London, Great Britain.

3. W. Wulf, R. Levin, and C. Pierson, "Overview of the Hydra Operating System Development,"
Proceedings of the FiJ'th Symposium on Operating Systems Principals, Austin, Texas,
November, 1975.

4. D. M. England, "Capability concept mechanism and structure in System 250," Proceedings of
the International Workshop on Protection in Operating Systems, IRIA, Rocquencourt,
France, August, 1974.

5. C. M. Geschke, J. H. Morris, and E. H. Satterthwaite, "Early experience with Mesa,"
Proceedings of ACM Conference on Language Design for Reliable Software, Raleigh, North
Carolina, March 1977.

6. C. A. R. Hoare, "Monitors: An Operating System Structuring Concept," Communications of the
ACM, 17, 10, pp. 549-557, October 1974.

7. R. M. Needharn and R. D. H. Walker, "The Cambridge CAP Computer and it protection
system," Proceedings of the Sixth Symposium on Operating System Principles, Purdue
University, Lafayette, Indiana, November 1977.

8. R. M. Needham, "The CAP project - interim evaluation," Proceedings of the Sixth Symposium
on Operating System Principles, Purdue University, Lafayette, Indiana, November 1977.

9. B. J. Stroustrup, "On unifying module interfaces," Operating System Review, 12, 1, pp. 90-98,
January 1978.

19

