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Abstract 

Many operating system designs can be placed into one of two very rough 
categories, depending upon how they implement and use the notions of 
process and synchronization. One category, the "Message-oriented System," 
is characterized by a relatively small, static number of processes with an 
explicit message system for communicating among them. The other category, 
the "Procedure-oriented System," is characterized by a large, rapidly 
changing number of small processes and a process synchronization 
mechanism based on shared data. 

In this paper, it is demonstrated that these two categories are duals of each 
other and that a system which is constructed according to one model has a 
direct counterpart in the other. The principal conclusion is that neither model 
is inherently preferable, and the main consideration for choosing between 
them is the nature of the machine architecture upon which the system is 
being built, not the application which the system will ultimately support. 

This is an empirical paper, in the sense of  empirical studies in the natural sciences. We have 

observed a number of samples from a class of  objects and identified a classification of  some of  

their properties. We have then generalized our classification and constructed abstract models to 

describe these properties. With the aid of these models, we were able to make some observations 

about the nature of the objects themselves, observations which are supported by other experimental 

evidence. Finally, we have drawn some conclusions about the class of  objects which better aid our 

understanding of  that class and the decisions which affect the design of members of that class. 

The universe in this investigation is the class of operating systems, and the properties in which we 

are interested are the ways in which the concepts of  process, synchronization, and interprocess 

communication occur within these systems and among their clients. There appear to be two 

general categories in this respect, which we designate the Message-oriented Systems and the 

Procedure-oriented Systems. Most systems which we have observed tend to be biased fairy 

strongly in favour of one or the other, rather than being neutral or indeterminate. Moreover, 
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within each of the categories, the systems tend to be more like each other than like systems of the 

other category. Finally, in several design efforts in which either of  us have participated or 

observed first-hand, attempts to combine fundamental characteristics from the two categories have 

met with failure or have been abandonned. 

To characterise our classifications, we have constructed a canonical model for each category. The 

message-oriented model is characterised by a small, relatively static number of big processes, an 

explicit set of  message channels between them, a relatively limited amount of  direct sharing of  data 

in memory, and an identification of  address space or context with processes. The procedure- 

oriented model is characterized by a large number of very small processes, rapid creation and 

deletion of  processes, communication by means of direct sharing and interlocking of data in 

memory, and identification of the context of execution with the function being executed rather 

than with the process. These two models define two differents kinds of primitive operations for 

managing processes and synchronization in an operating system. From them, we will derive three 

observations: 

1. The two models are duals of  each other. That is, a program or subsystem constructed 
strictly according to the primitives defined by one model can be mapped directly 
into a dual program or subsystem which fits the other model. 

2. The dual programs or subsystems are logically identical to each other. They can also be 
made textually very similar, differing only in non-essential details. 

3. The performance of a program or subsystem from one model, as reflected by its queue 
lengths, waiting times, service rates, etc. is identical to that of  its dual system, 
given identical scheduling strategies. Furthermore, the primitive operations 
provided by the operating system of one model can be made as efficient as their 
duals of the other model. 

The principal conclusion we will draw from these observations is that the considerations for 

choosing which model to adopt in a given system are not found in the applications which that 

system is meant to support. Instead, they lie in the substrate upon which the system is built and 

are a function of which set of  primitive operations and mechanisms are easier to build or better 

suited to the constraints imposed by the machine architecture and hardware. 

In the remainder of  the paper, we develop the canonical models in greater detail. We then present 

the three observations, our reasons for believing them, and some empirical support for them. 

Finally, we discuss the consequences and conclusions which we derived from this point of  view. 

Two Models 

It is not helpful in this paper to develop an elaborate formalism defining the two canonical models 

for our categories of  operating systems. Instead, we will describe these in informal English, 

outlining the characteristics of each in familiar terms. Similarly, our observations will be based on 
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informal arguments about the models, not on formal, rigourous proofs. 

An important caveat to bear in mind is that these models bear roughly the same relationshiro to 

reality as, for example, the postulate of frictionless surfaces does to reality in physics. That is, no 

real system precisely agrees with either model in all respects. Furthermore, most operating systems 

typically have some subsystems which behave like one and other subsystems which behave like the 

other. Thus the observations which we will make apply only to our models, and our conclusions 

will describe a real system only to the same degree that that system corresponds to one or the 

other of  the models. 

However, we believe and have observed that the models are reasonable in the sense that most 

modern operating systems can be usefully classified using them. Some systems are implemented in 

a style which is very close in spirit to one model or the other. Other systems are able to be 

partitioned into subsystems, each of which corresponds to one of  the models, and which are 

coupled by explicit interface mechanisms. Most of  the remaining systems are so ill-structured and 

unstable (for example, the ratio of bits, operations, and/or  interfaces to information content is 

much too high) that they are unreliable, unmanageable, uneconomic, and unusable. 

Message-oriented System 

At the level of  mechanism, this kind of  system is characterized by facilities for passing messages 

(or events, or whatever they might be called in a particular system) easily and efficiently among 

processes. There also convenient facilities for queuing messages at destination processes until they 

can be acted upon. Processes are provided with primitive operations to send messages, wait for 

any message, wait for a particular class of message, and examine the state of the message queue. 

Pre-emption of  the processor occurs when a message arrives at a 'higher priority' process which is 

waiting for a message of  that kind. 

Some of  the hallmarks of  successful systems designed according to this model are the following. 

Specific communication paths (i.e., message channels, ports, sockets, or other means of  
identifying classes of messages) are established for specific forms of  communication 
between particular pairs of  processes. This binding typically persists for relatively long 
periods, and is often done when the system is initialized. 

The number of  processes and the connections between them remain relatively static. 
Deletion of processes tends to be very difficult because of  the possibility of  an arbitrary 
number of queued messages awaiting response. Creating processes and changing 
connections can be correspondingly difficult. 

Each process tends to operate in a relatively static context. Virtual memories or address 
spaces are usually placed in one-to-one correspondence with processes. Processes rarely 
cross protection boundaries (except to briefly enter the executive or kernel), and they 
rarely share data  in memory. 
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As a result, processes tend It  be assoc&ted with system resources, and the needs o f  
applications which the system exists to serve are encoded into data to be passed around in 
messages. 

This style of system architecture is most common in the world of  real-time systems and process 

control, where frequently the applications themselves are encoded in message blocks denoting 

transactions. However, there are also a number of  general purpose operating systems implemented 

in this way, including, for example, IBM's OS/36011]. The most elegant example of a message- 

oriented system is the GEC 4080[2]. 

In this style of system, a number of  characteristics tend to emerge as natural consequences of  good 

design practice: 

Synchronization among processes and queuing for congested resources is implemented in 
the message queues attached to the processes associated with those resources. 

Data structures which must be manipulated by more than one process are passed (by 
reference) in messages. No process touches the data unless it is currently processing a 
message referring to it, and a process does not continue to manipulate the data after it has 
passed it on in a message to another process. 

Peripheral devices are treated as processes (or virtual processes). Control of a device often 
resembles sending a message to that device, and an 'interrupt' from the device is manifest 
as a message to some other process. 

Priorities tend to be statically assigned to processes at the time the system is designed, and 
they correspond to the timing needs of the resources being managed. 

Processes operate upon one or a very small number of  messages at a time and normally 
complete those operations before looking at the message queues again. 

Because processes operate in static contexts, neither procedural interfaces no global naming 
schemes are very useful. 

Our canonical model is, therefore, and idealized operating system kernel and/or programming 

environment which provides the following facilities: 

Messages and message identifiers. A message is a data structure meant for sending 
information from one process to another, it typically contains a small, fixed area for data 
which is passed by value and space for a pointer to larger data structures which must be 
passed by reference. A message identifier is a handle by which a particular message can be 
identified. 

Message channels and message ports. A message channel is an abstract structure which 
identifies the destination of  a message. A message port is queue capable of holding 
messages of  a certain class or type which might be received by a particular process. Each 
message channel must be bound to a particular message port before is can be used. A 
message port, however, may have more than one message channel bound to it. 

Four message transmission operations: 

SenflMessage[messageChannel, messageBofly] returns [messageIfl] -- This operation 
simply queues a new message on the port bound to the the 
messageChannel named as parameter. The messageId returned is used as 
parameter to the following operation. 
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AwaitReply[messageld] returns [messageBody] -- The operation causes the process 
to wait for a reply to a specific message previously sent via SendMessage. 

WaitForMessage[set of messagePort] returns [messageBody, messageld, 
messagePort] -- This operation allows a process to wait for a new 
(unsolicited) message on any one of  the message ports named in the 
parameter. The message which is first on the queue is returned, along 
with a message identifier for future reference and an indication of  the port 
from which that message came. 

SendReply[messageld, messageBody] -- This operation sends a reply to the 
particular message identified by the message identifier. 

Process declarations. A process (or more precisely, a process template) consists of  local data 
and algorithms, defines certain message ports, and refers to (i.e., sends messages to) certain 
message channels representing other processes. 

The operation CreateProcess. This operation creates (an instance of) a process which has 
been previously declared, and binds the message channels it references to message ports of  
previously existing processes. Note that because of  the binding, this operation is rather 
cumbersome and should not be used extravigantly. (No DeleteProeess operation is 
provided in our model, because it would be messy and not important.) 

Finally, our canonical model for the message-oriented system suggests a standard way, 

characterised by the program outline below, for implementing a simple resource manager using 

these primitive system operations. It consists of  a single process containing local data to represent 

the state information necessary for managing that resource and a loop which waits for a request 

from any of  a set of  ports, then services that request. 

begin m: messageBody; 
i: messageld; 
p: portld; 
s: set ofportld; 
. . .  --local data and state information for this process 

initialize; 

do forever; 
[m, i, p] ~- WaitForMessage[s]; 
case p of 

port1 = > . . .  ; --algorithm for poR1 
port2 = > . . .  

if resourceExhausted then 
s ,- s - port2; 

SendReply[i, reply]; 
. . .  ; --algorithm for port2 

pork : > .  
s ,- s + port2 
. . .  ; --algorithm for p o r k  

endcase; 
endioop; 

end. 

In this process, the kind of  service requested is a function of  which port the requesting message 

arrives on. It may or may not involve making requests of  still other processes and/or  sending a 
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reply back to the requestor. It may also result in some circumstance, such as the exhaustion of a 

resource, which prevents further requests from being considered. These remain queued on their 

port until later, when the process is willing to listen on that port again. 

Note that if a whole system is built according to this style, then the sole means of  interaction 

among the components of  that system is by means of the message facility. Each process can 

operate in its own address space without interference from the others. Because of the serial way in 

which requests are handled, there is never any need to protect the state information of  a process 

from multiple, simultaneous access and updating. 

Procedure-oriented System 

At the level of mechanism, this kind of system is characterized by a protection and addressing 

mechanism oriented toward procedures and efficient procedure call facilities which can take a 

process very rapidly from one context to another. Cooperation among processes is achieved by 

some form of locks, semaphores, monitors, or other synchronizing data structures (we will use the 

term lock as a generic identification of these). In this kind of  system, a process attempts to claim a 

lock, and may be forced to wait on a queue until some other process releases it. Pre-emption of  

the processor occurs when a release operation is performed on a lock which a 'higher priority' 

process is attempting to claim. 

Some of the hallmarks of  successful system design in this environment are the following: 

Global data can be both protected and efficiently accessed by providing procedural 
interfaces which do all of  the synchronization and manipulation in controlled ways. 

Process creation is very easy since no communication channels have to be set up with 
existing processes; deletion of a process is correspondingly easy so long as it is not holding 
any locks. 

A process typically has only one goal or task, but it wanders all over the system (by means 
of calling procedures to enter different contexts) in order to get that thing done. 

As a result, the system resources tend to be encoded in common or global data structures and 
the applications are associated with processes whose needs are encoded in calls to system- 
provided procedures which access this data. 

This style is characteristics of a wide variety of  designs, including HYDRA[3], the Plessey System 

250[4], and others. 

Some of  the characteristics of  systems which result from this viewpoint are the following: 

Synchronization of  processes and queuing for congested resources occurs in the form of  
queues o f  processes waiting for locks associated with the corresponding data structures. 

Data is shared directly among processes, and processes tend to lock only small parts of  the 
data structures for relatively short periods of time. 
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Control of  and 'interrupts' from peripheral devices take the form of manipulating locks 
and/or  shared data in memory. 

Processes inherit their priorities dynamically from the contexts in which they execute; 
priorities are associated with the locks or data structures and correspond to the timing 
requirements of  the resources they represent. 

Global naming schemes are an important feature in optimizing the context switching, and 
the contexts represent an import form of  protection. 

Our canonical model for a procedure-oriented system is an operating system kernel and/or  a 

programming environment which provides the following facilities, which we describe as 

hypothetical extensions to Mesa, a Pascal-like language developed at Xerox[5]: 

Procedures. A procedure is a piece of Mesa text containing algorithms, local data, 
parameters, and results. It always operates in the scope of a Mesa module and may access 
any global data declared in that module (as well as in any containing procedures). 

Procedure call facilities, synchronous and asynchronous. The synchronous procedure call 
mechanism is just the ordinary Mesa procedure call statement, which may return results. 
This is very much like procedure or function calls in Algol, Pascal, etc. The asynchronous 
procedure call mechanism is represented by the FORK and JOiN statements, which are 
defined as follows: 

processld <- FORK p r o c e d u r e N a m e [ p a r a m e t e r L i s t ]  -- This statement starts 
the procedure executing as a new process with its own parameters. The 
procedure operates in the context of  its declaration, just as if it had been 
called synchronously, but the process has its own call stack and state. The 
calling process continues executing from the statement following the 
FORK. The process identifier returned from FORK is used in the next 
statement_ 

[ r e su l tL i s t ]  ,,- JOaN p r o e a s s l d  -- This statement causes the process executing it 
to synchronize itself with the termination of  the process named by the 
process identifier. The results are retrieved from that process and 
returned to the calling process as if they had been returned from an 
ordinary procedure call. The JOINed process is then destroyed and 
execution continues in the JOINing process from the statement following 
the JOIN. 

Modules and monitors. A module is the primitive Mesa unit of compilation and consists 
of  a collection of  procedures and data. The scope rules of the language determine which 
of  these procedures and data are accessible or callable from outside the module. A 
monitor is a special kind of  Mesa module which has associated with it a lock to prevent 
more than one process from executing inside of it at any one time. It is based on and 
very similar to the monitor mechanism described by Hoare[6]. 

Module instantiation. Modules (including monitor modules) may be instantiated in Mesa 
by means of the NEW and START statements. These cause a new context to be created for 
holding the module data, provide the binding from external procedure references within 
the module to procedures declared in other modules, and activate the initialization code o f  
the module. 

Condition variables. Condition variables are part of  Hoare's monitor mechanism an 
provide more flexible synchronization among events than mutual exclusion facility of the 
monitor lock or the process termination facility of the JOIN statement. In our model, a 
condition variable, must be contained within a monitor, has associated with it a queue of  
processes, and has two operations defined on it: 
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WAIT c o n d i t i o n V a r i a b l e  -- This causes the process executing it to release the 
monitor lock, suspend execution, and join the queue associated with that 
condition variable. 

SIGNAL c o n d i t i o n V a r i a b l e  -- This causes a process which has previously 
WAiTed on the condition variable to resume execution from its next 
statement when it is able to reclaim the monitor lock. 

Note that because the FORK and JOIN operations apply to procedures which are already declared 

and bound to the right context, these operations take the same order of  magnitude of time to 

execute as do simple procedure calls and returns. Thus processes are very lightweight, and can be 

created and destroyed very frequently. Module and monitor instantiation, on the other hand, is 

more cumbersome and is usually done statically before the system is started. Note that this 

canonical model has no module deletion facility. 

As we did for the previous model, we can define a standard style of simple resource manager for 

the procedure-oriented system. This is characterised by the program outline below. It consists of  

a monitor containing global data representing the state information for the resource, plus a number 

of procedure declarations representing the different services offered. 

ResourceManager:  MONITOR = 

C: CONDITION; 
resou rceExhausted: BOOLEAN; 
• . .  --global data and state information for this process 

procl :  ENTRY PROCEDURE[. • . ] = 
• . .  ; --algorithm for procl  

proc2: ENTRY PROCEDURE[ . . .  ] RETURNS[• . . ] = 
BEGIN 

IF r e s o u  rceExhausted THEN WAIT C; 

RE;URN[ results]; 
. ° • ; 

END; --algorithm for proc2 

• , • 

procL: ENTRY P R O C E D U R E [ . . .  ] = 
BEGIN 

• = • ; 

resou rceExhausted , -  FALSE; 
SIGNAL C ; 
. . = ; 

END; --algorithm for procL 
endloop; 

initialize; 
END, 

The attribute ENTRY is used to distinguish procedures which are called from outside the monitor, 

thus seizing the monitor lock, from those which are declared purely internal to the monitor. Any 
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of the procedures in this module may, of  course, call procedures declared in other modules for 

other system services before returning. Within the monitor, condition variables are used to control 

waiting for circumstances such as the availability of resources. These are used in this standard 

resource manager to control the access of  a process the procedure representing a particular kind of 

service. 

If a whole system is built in this style, then the sole means of  interaction among its components is 

procedural. Processes move from one context to another by means of  the procedure call facility 

across module boundaries, and they use asynchronous calls to stimulate concurrent activity. They 

depend upon monitor locks and condition variables to keep out of  the way of  each other. Thus no 

process can be associated with a single address space unless that space be the whole system. 

Characteristics of the Models 

The importance of these rather idealized models is that we can show that the two styles of  system 

design are duals of  each other. We will show how a program for one kind of  system can be 

mapped into a program appropriate for the other. We will also show that as a result o f  this 

mapping, the logic of  the programs in the dual systems is invariant. Finally, we will argue that the 

performance of  the system can be preserved across the mapping. It should be noted that our 

transformation is not the naive technique of  simulating one set of  primitives in terms of  the other. 

Instead, it is a direct transformation on the programs themselves, exchanging the primitive 

operations and data structures of  one style for those of  the other. 

The Duality Mapping 

The mapping is derived from the following correspondence between the basic system facilities and 

canonical styles for resource managers: 
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Message-oriented system 

Processes, CreateProcess 

Message Channels 

Message Ports 

SendMessage; AwaitReply 
(immediate) 

SendMessage;...  AwaitReply 
(delayed) 

SendReply 

main loop of standard resource 
manager, WaitForMessage statement, 
case statement 

arms of the case statement 

selective waiting for messages 

Procedu re-orien ted system 

Monitors, NEW/START 

External Procedure identifiers 

ENTRY procedure identifiers 

simple procedure call 

FORK; . . .  JOIN 

RETURN (from procedure) 

monitor lock, ENTRY attribute 

ENTRY procedure declarations 

condition variables, WAIT, SIGNAL 

That is, the facilities on the left serve the same purpose in the message-oriented system as do the 

ones opposite them in the procedure-oriented system. For example, a SendMessage operation 

followed by an AwaitReply operation some time later is used by message system clients where a 

procedure system client would use FORK and JOIN. 

The most interesting correspondence is between the processes of the one system and the monitors 

of the other. In particular, in the canonical style of resource manager, the arms of the case 

statement in the message-oriented model correspond to the ENTRY procedure declarations in the 

other. The code representing the main loop of the process, with its WaitForMessage, and case 

statement performs exactly the same function as the mutual exclusion lock on the monitor, namely 

that of serializing the requests for service and admitting only one at a time. The case statement 

itself sorts out which service is requested in the same way as the different procedure names do in 

the monitor. 

Similarity of Programs 

This forms the basis of the duality mapping. If a client system or subsystem is written in the strict 

style of one of our standard resource managers, then it can be transformed directly into the other 

kind of system by replacing each construct with its corresponding one. For example, each monitor 

is replaced with a process declaration containing a main loop in the style we suggested. All 

synchronous and asynchronous procedure calls are replaced by SendMessage and AwaitReply 
operations, and returns from procedures are replaced by SendReply operations. The use of 

condition variables for managing the synchronization of events is replaced by carefully selected 

waiting for messages. This transformation can, of course, be applied in either direction. 
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Note that by applying the transformation, we do not affect the logic of the client programs at all. In 

fact, none of their interesting parts are touched or even rearranged (except for the initialization 

code of  each resource manager, which by tradition appears after the procedure declarations in the 

monitor but before the main loop in the process). No algorithms are changed; no data structures 

are replaced; no interface strategies are affected. Only the actual text representing the interactions 

between client system components is modified, and this is only to reflect the 'syntactic' details of 

the primitive facilities of  the other kind of  system. The semantic content is invariant. 

This simplistic mapping between the two types of  systems does not work if the systems being 

transformed do not adhere to the strict style we postulated. If a real system implements process or 

synchronization facilities which are very different from those of  our canonical model, then the 

transformation must be extended and/or may not make sense. Similarly, if resource managers or 

users of  resources are designed in a grossly different way, even though they use the same primitive 

operations, the transformation may produce a very contrived or awkward program structure. This 

raises an interesting question, to which we have no definite answer: 

If a primitive operation, process facility, or programming style is proposed for a system 
which fits into one of  our two broad categories, and if no reasonable counterpart for it can 
be found in the other category, is it a good thing? That is, would a style or mechanism 
which has no dual be considered a truly well-structured construct which is elegant in form 
and rich in semantic contenff Or would it be considered an overimaginative, ungainly 
feature which is awkward to program and hard to understand? 

For example, the WAIT statement in the procedure-oriented model provides a considerably richer 

synchronization facility than does selective waiting for messages in the message-oriented model. In 

particular, a process may WAtT anywhere within the ENTRY procedure or any other monitor 

procedure called by it, not just at the beginning as we have suggested in the canonical style. 

However, this is not without its disadvantages. The procedure which WAITS must ensure that the 

monitor invariant is true, even though it might be deep inside an inner block o f  an inner 

procedure and may have captured all sorts of  monitor information and temporary results in its 

local variables, results which could easily be invalidated by another process entering the monitor. 

In this sense, the WAIT statement is almost as ill-structured as the notorious 'go to' statement. 

Perhaps, it should be confined to, say, the entry and exit points of  an ENTRY procedure for more 

clarity. 

One final observation with respect to the invariance of  programs under the duality mapping: It is 

possible to imagine embedding the primitive synchronization and process facilities of  the message- 

oriented system in a strongly-typed language such as Mesa. Furthermore, if we accept that the 

main loop of  the canonical resource manager, the WaitForMessage operation, and the ease 

statement are fundamental parts of  the programming style, then they can be absorbed into the 

linguistic unit representing a process (so that a process declaration consists of  some global data, 

and a set of  actions to associate with each message port). Finally, we can make the sending of 
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messages look syntactically like calling or FORKing procedures, with the full typechecking facilities 

of  the language applied to message bodies just as we apply it now to parameter and result lists. 

Then if we consider a system built according to the canonical style in this environment, we see that 

its dual is textually identical except for the spelling of certain keywords of the language. 

Preservation of Performance 

Our canonical models and standard styles for implementing resource managers suggest that there is 

another property which is invariant under the duality mapping, namely the performance of the 

client system. If we take due care in the implementation of the primitive operations of  the two 

operating system kernels (and if we assume similar processor characteristics and peripheral 

devices), then a system of programs built in terms of  one will have the same execution 

characteristics as its dual system built in terms of  the other. To understand this, observe that there 

are three components of  the dynamic behaviour of a system of programs: 

the execution times of the programs themselves, 

the computational overhead of the of  the primitive system operations they call, and 

the queuing and waiting times which reflect the congestion and sharing of  resources, 
dependence upon external events, and scheduling decisions. 

The duality transformation leaves the main bodies of the programs comprising the system 

untouched. Thus the algorithms will all compute at the same speed, and the same amount of  

information will be stored in each data structure. The same amount of client code will be 

executed in each of  the dual systems. The same number of additions, multiplications, comparisons, 

and string operations will be performed. Therefore if basic processor characteristics are 

unchanged, then these will take precisely the same amount of  computing power, and this 

component of the system performance will remain unchanged. 

The other component affecting the speed of  execution of a single program is the time it takes to 

execute each of  the primitive system operations it calls. We assert without proof that the facilities 

of  each of our two canonical models can be made to execute as efficiently as the corresponding 

facilities of  the other model. I.e., 

Sending a message, with its inherent need to allocate a message block and manipulate a 
queue and its possibility of  forcing a context (process) switch, is a computation of  the same 
complexity as that of  calling or FORKing tO an EN'rR¥ procedure, which involves the same 
need to allocate, queue, and force a context switch, 

Leaving a monitor, with the possibility o f  having to unqueue a waiting process and re- 
enter it, is an operation of  the same complexity as that of  waiting for new messages. 

Process switching can be made equally fast in either system, and for similar machine 
architectures this means saving the same amount of  state information. The same is true 
for the scheduling and dispatching of processes at the 'microscopic' level. 
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Virtual memory and paging or swapping can even be used with equal effectiveness in 
either model. 

As evidence for this belief, we cite the GEC 408012], in which message queuing, process switching, 

and dispatching are implemented as fast operations in microcode, and an implementation of the 

Mesa system in which the dual operations are also implemented in microcode with Similar speed. 

In general, we have observed that a message-oriented operating system kernel implemented by a 

dedicated team on a friendly machine architecture can be made very efficient relative to the basic 

cycle time of that machine. But we have also observed that the same is true f o r a  procedure- 

oriented system if the machine architecture is appropriate for that. We can find no inherent 

differences in the two approaches. 

Note that it is also possible to make the basic operations of the two models behave identically with 

respect to the scheduling and dispatching of client processes. That is, if the message system 

implements a particular discipline for queuing and unqueuing messages, then the procedure- 

oriented system can implement exactly the same discipline for its queuing and unqueuing of 

processes. Similarly, if one system forces a context switch in a particular circumstance, either as a 

result of  a kernel operation or a pre-emption due to an external event, then the other model can 

do exactly the same in response to the dual circumstance. Thus, not only will operations happen 

just as quickly in one model as in the other, but corresponding events will happen in the same 

order. 

This means that the third component affecting the performance of a suite of programs -- namely 

the way in which the executions of those programs interact with others -- is also invariant under 

the duality transformation, assuming that the two previous components are. Each message between 

processes (or between a process and a device) in the message-oriented system corresponds in the 

other system to a call to or return from a synchronous or asynchronous ENTRY procedure. If the 

message has to be queued because t h e  destination process is not ready to receive it, then the 

procedure call will also be queued at its monitor, WAiT statement, or JOiN statement for the same 

length of time. The same external events will cause the congestion of a resource manager (either 

process or monitor) to be relieved at the same time. The peripheral devices will exhibit the same 

behaviour with respect to such issues as latency, response time, transfer times, etc., and thus the 

processes waiting for them to complete will wait just as long. Furthermore, the scheduling and 

dispatching can be arranged so that the same number of  context switches, allocations of message 

blocks or local frames, etc., take place whether it is a message- or procedure-oriented system. 

From these arguments, we claim that the total lifetime of  a computation is the same for the two 

models, as is the juxtaposition of that lifetime with respect the lifetimes of other computations. In 

the procedure-oriented model, the computation corresponds to a process with its call stack. During 

its life, it wanders through the system, occasionally executing code, occasionally waiting in queues, 
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always crossing context boundaries by means of  procedure calls and returns. But in the message- 

oriented model, the computation is represented only partly by the execution of code and partly by 

the transmission of messages. It also wanders through the system, occasionally executing the code 

of some process but always taking the form of a message when it crosses context boundaries or 

waits in queues. 

Empirical Support 

For accidental reasons, it is not very easy to change the structure of  most operating systems in a 

way which would reflect the duality we suggest. The underlying addressing structures, use of  

global data, and styles of  communication are usually so bound to the design and implementation 

that performing the transformation to a dual version would be a major exercise, not justified by 

the second order gains. Accordingly, there is not much evidence of  example which can be quoted 

in support of our thesis. 

However, one case can be cited, namely the Cambridge CAP Computer [7]. This system has a 

structure which leads to the complete addressing encapsulation of each system module, and to an 

operating system in which each module is implemented as a complete program (normally 

Algo168C). It was a basic design principle that any system data structure be managed by a single 

module (or protected procedure, in CAP terminology). An instance of such a procedure might be 

found in many or all of  the processes in the system. Though this design approach was adopted for 

quite independent reasons, it turned out to facilitate just the kind of restructuring which we are 

discussing in this paper. 

For example, the original design had a process which was devoted to the management of  system 

internal names, which constituted a sort of  central file directory referenced by all ordinary 

directories. This process was activated by messages to recover details of  particular filed objects and 

to increment or decrement their reference counts. It was noticed that the message system was 

rather expensive, and accordingly the management program was incorporated in each process as a 

protected procedure. The text of  the program hardly had to be changed at all, and the changes 

which were made were trivial. Partly as a result of  this observation, a programming style was 

adopted for the rest of  the operating system with a view to facilitating similar rearrangements later 

[8]. This turned out to be strikingly similar to the abstract models of this paper. 

The ease of rearrangement of  the CAP system was a consequence of  a programming style 

originally adopted because of  the protection structure of the machine, but there seems little reason 

to doubt that similar conventions could be adopted without loss in a more ordinary computer. B. 

J. Stroustrup has made some proposals in [9] which are relevant here. 
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Underlying Differences between Styles 

The conclusion which we can draw from our canonical models and the observations we made 

about them is that there is no inherent difference between the two styles of system design or the 

programs that use them. That is, the two styles lead to client systems with similar program 

structure and performance (a "zeroth-order" consideration). Furthermore, the computational 

complexity of the implementations of the system facilities to provide the two styles is similar (a 

"first-order" consideration). Thus the basis for preferring one style to the other must be found in 

some second- or higher-order consideration. It must be two or more steps removed from the 

primary consideration of the designer of the application of the system. We believe that this basis 

is in the nature of the substrate -- i.e., machine architecture and/or programming environment -- 

on which the process and synchronization facilities are implemented. The factors and design 

decisions of the system upon which the process and synchronization facilities are built are the 

things which make one or the other style more attractive or more tedious. 

Thus on one machine, the notion of  process may be intimately tied to that of virtual memory, and 

it may be easy to allocate message blocks and queue messages, but very difficult to to build a 

protected procedure call mechanism. In this case, a message-oriented style is probably the best. 

On another system with an Algol-like stack and block structured allocation, the procedure-oriented 

model is probably more suitable. Other such factors include the organization of  real and Virtual 

memory, the size of  the stateword which must be saved on every context switch, the ease with 

which scheduling and dispatching can be done, the arrangement of peripheral devices and 

interrupts, and the architecture of the instruction set and the programmable registers. These are 

usually chosen or constrained before the design of any application (or even the operating system 

kernel) is contemplated. It is rare that the operating system designer has a great influence on these 

factors and even rarer that he has complete control over them. Thus he normally faced with 

having to build the most reasonable set of  primitives he can without incurring large computational 

penalties in the most basic operations of  his system. 

If this is the case, then the arguments about processes and synchronization which are often found 

in the corridors of organizations actively designing a new system (and which occasionally find their 

way into the literature) take on a decidedly non-technical tone. In our experience, they tend to be 

highly emotional, they consume far more energy than any other part of  the system, they 

occasionally lead to organizational difficulties, and they are about issues which this analysis 

suggests are irrelevant. They are characterised by someone representing one style as being unable 

to reconcile the system organization postulated by the other style with the limitations and 

constraints he has learned by analysis or bitter experience, and by a mutual feeling on the other 

side. Part of  the problem is that the the common notion of  process evokes wildly different 

implications in the two worlds, which we have shown is indeed the case. The result of  such 

arguments is rarely an understanding of the equivalence of  the two approaches, but rather an 
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unpleasant compromise for all involved. 

Conclusions 

Our analysis is likely to be controversial. Like those of any empirical science, our conclusions 

cannot be accepted without a lot of thought and supporting experiments. We have found that the 

duality between the two categories of  system design is a notion which defies belief amongst a non- 

trivial sample of our colleagues. ~Ihe observations about the similarity of program logic, code, and 

performance are particularly hard to accept when the universe of  discourse is not one of  naturally 

occurring objects but man-made ones. Time will tell whether they are correct. 

We have several objectives in developing this analysis. First, we want to eliminate some of  the 

uninformed controversy about which kinds of systems are "better" to build. We find merit in both 

styles, with respect to structure, performance, logical soundness, elegance, and "correctness." 

Second, we are able to eliminate several degrees of  freedom in the design process, thus allowing 

the design of better, more consistent, more reliable systems at lower cost. Once a choice is made 

between the two styles, many of  the properties of  "good" system design follow naturally. It is no 

longer necessary to make separate, independent choices about related issues, with the risk of  

introducing some fundamental incompatibility which will not be perceived until too late after the 

system starts to operate. Finally, we remark that the equivalence between the two styles of  system 

design suggests that it might be possible to devise a uniform way of modelling the interactions 

between system components, whether by messages or by procedures, in order to derive better 

means of  calculating the system performance before it is designed instead of  after. 
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