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Abstract

This article presents a selection of current distributed garbage
collection techniques, and evaluates them with respect to their
completeness, fault-tolerance and efficiency, including promptness,
concurrency, and scalability. In particular, techniques based onref-
erence trackingare presented, followed by those based ontracing.
Finally, hybrid schemes which extend reference tracking with trac-
ing in order to collect cyclic garbage are examined. The strengths
and weaknesses of the existing algorithms are outlined, and direc-
tions for further research are suggested.

1 Introduction

Garbage collection has become a common feature modern pro-
gramming languages [Wei90, CDG+88], because it solves the nec-
essary task of collecting resources which are no longer in use, re-
moving the burden of this complex problem from the programmer.
Explicit memory management is a difficult problem, where errors
are easy to make, but harder to detect, and much harder to correct.
The symptoms of premature deallocation and memory leaks of-
ten remain unobserved until execution reaches a point far removed
from the original error, or fail to show up repeatedly, or even at all,
unless the program is stressed in an unusual way [Wil92]. Tracking
these errors down consumes a considerable portion of development
time [Rov85]. Conflicting programming styles, concurrent access
to the heap, and programming languages with non-deterministic ex-
ecution orders further exacerbate the problem [PS95, Jon96].

Distributed systems provide additional levels of complexity, as a
shared heap can be accessed by many different applications, and
may include persistent data which outlives its creating program.
All processes must come to an agreement over whether a particular
object is garbage, but establishing this in the absence of a consis-
tent, global state is non-trivial. Process failures, network outages,
and other system errors further complicate the task of maintain-
ing a robust memory management system. Explicit memory man-
agement also defies modularity, since modules must introduce non-
local bookkeeping to ensure a module knows when other modules
are no longer interested in a particular object [Wil92]. Such book-
keeping is often non-trivial in a distributed system.

Providing an automatic solution to this problem that remains un-
obtrusive is challenging enough that garbage collection has been ac-
tively researched for over 40 years [McC60, Col60]. The problem
is well understood in the case of a single stand-alone process, where
there are clear tradeoffs between promptness, computational over-
head, and concurrency [AR98, Wil92]. However, the conversion of
techniques that apply to a uniprocessor environment to a distributed
system is not a simple task [PS95]. There is a large collection of
algorithms for the distributed case. However, they all make some
tradeoffs between completeness, fault-tolerance, and efficiency, in-
cluding promptness, concurrency, and scalability [Rod98].

1.1 Goals

The goals of a distributed garbage collector should be:

1. Safety.The collector should never reclaim objects that are not
garbage.

2. Completeness. The collector should reclaim all garbage.
This is especially important in long-lived distributed systems,
where the accumulation of even a small amount of garbage
over time can lead to system failures.

3. Fault-Tolerance. One of the attractive features of a dis-
tributed system is that the failure of one node does not hinder
the availability of another. The collector should also continue
to operate in the presence of failures due to message delay,
loss, re-ordering or duplication, or process failure.

4. Efficiency. The efficiency of a system is dependent upon
many factors. Some of the important aspects for distributed
garbage collectors include:

(a) Scalability. The collector should make minimum use
of non-scalable resources such as network bandwidth,
CPU time or storage space on each machine.

(b) Concurrency. The collector should not require exces-
sive synchronization with other machines, with the user
application, or with a local garbage collector.

(c) Promptness. The collector should reclaim garbage
with as little delay as possible. If excessive amounts
of garbage accumulate before it can be collected, the
system may exhaust its storage space, or page volatile
storage to disk, further slowing the system.

A good metric for evaluating collectors on the terms of fault-
tolerance and efficiency is that oflocality. Locality is a measure
of the number of machines whose cooperation is required in order
to collect garbage. An algorithm is said to have the property of lo-
cality if it only requires the cooperation of those machines which
contain the garbage [Rod98]. However, locality is not the only con-
sideration in evaluating a collector, as other factors may outweigh
its benefits.

This paper will analyze existing algorithms with respect to these
goals, with the aim of identifying areas for further development.
In Section 2, techniques based onreference trackingare examined.
Section 3 covers techniques based ontracing. Finally, Section 4
examineshybrid schemes, which augment reference tracking with
some form of tracing to collect cyclic garbage.

1.2 Object Model

A brief overview of the environment used by distributed garbage
collection algorithms will help introduce some terminology. A dis-
tributed system is divided into one or more separatemachinesor
processes. Each machine has its own address space, which contains
pieces of data calledobjects, for which it is thehost. Each object
may containreferencesto other objects, or be the target of refer-
ences. The directed graph with objects as vertices and references as
edges is called theobject reference graph. Each machine contains
a mutator, whose sole purpose, as far as the collector is concerned,
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is to modify the object reference graph. This represents the actions
of the user’s application.

References to other objects on the same machine are calledlocal
references, while those to objects on different machines are called
remotereferences. Objects which can be referenced by another ma-
chine are calledpublic, while those which can only be referenced
by other objects on their host machine are calledlocal. Some spe-
cial objects are identified asroots, which are never garbage (i.e.:
global variables, the run-time stack for a thread of execution, etc.).
Objects which are reachable by traversing references from a root
are live, while those that are not aregarbage. Objects which are
reachable only by traversing local references from a root are said to
be locally reachable, and have alocal root.

Remote references are represented by pairs of special objects,
calledentry-itemsandexit-items. The host of a public object con-
tains a single entry-item for that object, which contains a local ref-
erence to it. A machine containing a remote reference to the object
will have an exit-item, containing alocator. The host machine uses
the locator to find the entry-item corresponding to the object, and
thus obtains a local reference to it. The remote reference consists of
a local reference to the exit-item, which in turn is used to identify
an entry-item on the host machine, which contains a local reference
to the actual object.

There are four basic operations on remote references. First, ref-
erences may be created by the machine that hosts an object if it
sends a locator to a remote machine, which constructs an exit-item
from it. Next, references may be duplicated if one machine sends
a locator to another, allowing it to construct its own exit-item. This
does not require any interaction with the host of the object, only
a machine that already has a locator for that object. Also, refer-
ences may be traversed by passing their locator as the parameter to
a remote procedure call to the host machine. This has the effect
of creating a new local root for that object, in the thread that han-
dles the call. Finally, a reference may be deleted by deleting the
corresponding exit-item.

2 Reference Counting

Reference tracking and its variants are the most common forms of
direct identification of garbage. Direct identification of garbage
proceeds by detecting which objects are not reachable by traversing
references from a live object and marks them for reclamation. All
other objects must be live. Reference tracking is attractive in dis-
tributed systems for two reasons: its operation is interleaved with
that of the mutator, allowing for a high level of concurrency, and its
operation does not require any global information, meaning that it
has good locality.

Reference tracking is usually considered too expensive for
uniprocessor systems, since it adds overhead each time a reference
is modified, yielding a cost proportional to the total amount of work
done by the system. Its use in distributed systems, however, is quite
different, in that the overhead is only applied when distributed ref-
erences are created or copied. These operations tend to be much
rarer, since they involve communications overhead to send the ref-
erences to different machines.

2.1 Basic Reference Counting

The idea behind reference counting is simple [Col60]. Each object
keeps a count of the number of references to it in its entry-item.
Creating a new reference increments the count, and when the refer-
ence is destroyed, it is decremented again. When the count reaches
zero, the object is garbage and can be reclaimed. This procedure
is applied recursively, decrementing the counts of objects the re-
claimed object referred to, and continuing to reclaim objects whose
counts drop to zero.

This operation can cause unbounded delays while large portions
of the reference graph are reclaimed after a single reference is de-
stroyed. The solution is to place reclaimed objects in a queue in-
stead of decrementing the count of objects they refer to immediately
[Wei63]. When the storage for the objects is about to be reused, the
old references in the object are cleared, and their referents’ counts
decremented. In this way, only one object is ever processed at a
time, since the objects it refers to are merely queued for later pro-
cessing if they are reclaimed. This provides fine-grained concur-
rency with the mutator, as the amount of work done at each step is
at most proportional to the number of references in a single object.

In a distributed system, only remote references need to be
tracked. All the objects on one machine can share a single exit-
item, so that local operations impose no overhead. Each machine
can run its own local garbage collector to handle local references,
using any of the uniprocessor techniques. Objects with a positive
number of remote references are considered live by the local collec-
tor. When the remote reference count reaches zero, the object may
be reclaimed as soon as the local collector also determines there are
no local references to it.

Whenever a remote reference is duplicated, or deleted,increment
or decrementmessages must be sent to the host of the object. How-
ever, messages may be lost, delayed, or re-ordered. If an increment
message is sent followed by a decrement message, then the decre-
ment message might arrive first, causing the object to be unsafely
reclaimed before the increment message arrives. Furthermore, if a
decrement message is lost, or an increment message is duplicated,
then the object might never be reclaimed. Also, if a process crashes,
it will never send decrement messages for any remote references it
contained, which again will prevent those objects from ever being
reclaimed. Finally, reference counting is not complete even with-
out any failures. If two objects hold references to each other, neither
will ever be reclaimed.

2.2 Acknowledgement Messages

There are two types of race conditions between increment and
decrement messages that must be avoided, depending on who sends
the increment message when a reference is copied from one ma-
chine to another. Both race conditions can be avoided by using
acknowledgement messages [LM86].

If the receiver of a reference is responsible for sending the incre-
ment message, adecrement/incrementrace condition may occur,
when a machine sends a remote reference to another machine, and
then deletes its own reference (see figure 1). If the sending ma-
chine had the last reference to the object, and its decrement mes-
sage arrives before the receiving machine’s increment message, the
object might be unsafely reclaimed. To avoid this, when a machine
receives a copy of a remote reference, it sends along with the in-
crement message an acknowledgement request. The owner of the
object then sends an acknowledgement to the machine that sent the
copy of the reference. That machine must queue any decrement
messages until it receives this acknowledgement.

If the sender of a reference is responsible for sending the incre-
ment message, anincrement/decrementrace condition may occur,
when a machine sends a remote reference to another machine that
immediately deletes it (see figure 2). If the sending machine had
the last reference to the object, and the receiving machine’s decre-
ment message arrives before the sending machine’s increment mes-
sage, the object might be unsafely reclaimed. To avoid this, when
a machine wants to send a reference to another machine, it first
sends an acknowledgement request along with its increment mes-
sage. The owner of the object then sends an acknowledgment to the
sending machine. Once the sending machine has received this ac-
knowledgement, it can send a copy of the reference to the receiving
machine.



2 REFERENCE COUNTING 3

a

−1 +1

Copy Reference

Ack

Message

Entry−item

Reference

Exit−item

Deletion

Object

c

b

Figure 1: A decrement/increment race condition
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Figure 2: An increment/decrement race condition

Even with these acknowledgement messages, reference count-
ing is still not safe in the face of lost or duplicated messages. Sev-
eral other reference tracking schemes show better resilience to these
message failures.

2.3 Weighted Reference Counting

Weighted reference counting is a variant of reference counting that
eliminates the increment message, which improves message effi-
ciency and avoids race conditions [Bev87, WW87]. In addition to
associating a count with each object, a weight is associated with
each reference. The system keeps as invariant that the sum of the
weights associated with all the references to an object is equal to
the object’s reference count.

When an object is created, its count is initialized to its maximum
value, and the first reference to it receives that value as its weight.
When a machine wants to copy a reference, it divides the weight
of that reference in half, and associates the other half of the weight
with the new reference. When a reference is deleted, it returns its
weight in the decrement message, which is subtracted from the ob-
ject’s count. When an object’s count reaches zero, no references to
it may exist, and so the object can be reclaimed.

Although this reduces the number of messages and eliminates
race conditions, it requires extra space overhead to store the weight
with each reference. In practice, this can be stored as the logarithm
of the weight. However, it must be expanded to perform the sub-
traction once the reference is deleted. Also, the algorithm is still
not resilient to message loss or duplication, or process failure.

The most serious drawback, however, is that once a weight
reaches some minimum granularity, it cannot be further subdivided.
One solution to this is to request additional weight from the owner
of the object, but this is equivalent to an increment message. An-
other is to create an indirection object. The indirection object has
its own count, and forwards messages sent to it to the original ob-
ject. In the worst case, long chains of indirection objects might be
required, which would greatly increase the message complexity of
a computation.

By weakening the invariant so that an object’s count is only
greater than or equal to the sum of the weights of all references
to it, both message loss and reference duplication can be addressed
[Dic92]. When a reference cannot divide its weight any longer, it
is discarded, and replaced with a specialnull weightvalue, which
can be copied any number of times. Both this and message loss
would cause an object’s count to exceed the sum of the weights of
its references, which would prevent it from being collected. How-
ever, reference counting is not complete in the first place, so this
does not hinder a scheme where reference counting is augmented by
some other, more expensive technique to achieve completeness, as
in the hybrid algorithms described in Section 4. Message duplica-
tion, however, could still cause an object to be unsafely reclaimed.

2.4 Indirect Reference Counting

Indirect reference counting improves on weighted reference count-
ing by avoiding indirection objects, though it requires additional
memory [Piq91]. In this case, instead of associating a weight with
each reference, every reference gets its own counter. When a refer-
ence is copied, its local counter is incremented, and the copy stores
the location of the reference it was copied from. Then a reference
cannot be deleted until its own local counter reaches zero. When
this happens, it sends a decrement message to the reference that it
was copied from instead of the original object.

Since increments are done locally, there are no race conditions
associated with indirect reference counting. However, it is still not
resilient to message loss or duplication, or process failure. The
same technique can be used to reduce the message overhead of
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more reliable forms of reference tracking, though, such as the one
presented in the next subsection. The reduced number of messages
is offset by slightly larger messages, as each reference now con-
tains two pointers: aweakpointer to the actual object, and astrong
pointer to the sender of the reference. In addition to the space over-
head required to store both pointers, each machine may also be re-
quired to keep around references which it would have otherwise
deleted, because it has sent copies of them which are still in use.

2.5 Reference Listing

In order to deal with message loss and duplication, and process fail-
ure, reference listing replaces the standard reference counter with a
list of processes that hold a reference to an object [Sha91, SDP92,
BNOW94]. This adds a significant space overhead to maintain
the list, but provides the robustness that other reference tracking
schemes lack. Instead of increment and decrement messages, insert
and delete messages containing the identity of the process holding
the reference are sent when a reference is copied or deleted, respec-
tively.

Lost messages can be overcome by re-sending failed insert or
delete messages [BNOW94], or by periodically sending the entire
list of references one machine has to objects on another machine
[Sha91, SDP92]. Although distributing lists of references is attrac-
tive because it is simple to implement and does not require any ac-
knowledgements to ensure delivery, in practice these messages can
be very large, while queued and retransmitted messages and their
associated acknowledgements are very small. Furthermore, in a
truly unreliable networking environment, where large packets must
be broken up into smaller ones for delivery, it becomes increasingly
unlikely that even one entire list of references could be transmitted
without errors. Duplicate messages can be safely ignored, since a
process can only be added to the reference list once, and can only
be deleted once. Race conditions must be handled by using ac-
knowledgement messages, or a scheme that avoids insert messages
altogether, such as indirect reference counting. Process failure can
be handled by removing processes from the list which are known to
have failed.

Reference listing does introduce an additional race condition,
however. If a machine deletes a reference to an object, and later ac-
quires a new reference to the same object, its delete message might
not arrive until after the insert message, in which case the insert
message would appear to be a duplicate and be discarded. This can
be avoided by time-stamping insert and delete messages, and stor-
ing the largest timestamp of an insert message in the reference list.
If a delete message is received with a timestamp that is smaller then
the one in the reference list, it can safely be ignored.

Reference listing is therefore completely resilient to message
loss, duplication, or re-ordering, as well as machine failures. This
safety comes at the cost of additional storage overhead for main-
taining the reference lists, however this is probably acceptable if
only used for public objects. Like all reference tracking techniques,
it displays good scalability, concurrency, and promptness. The ma-
jor drawback is that it cannot collect cyclic garbage, and so is not
complete.

3 Tracing

The various types of tracing algorithms are the most commonindi-
rect garbage collectors. Indirect identification of garbage proceeds
by detecting which objects are reachable by traversing references
from a live object and marks them as live. All other objects must be
garbage. Tracing algorithms often require a good deal of synchro-
nization between machines and with the mutator. Furthermore, the
trace must pass through all live objects, and all processes must be

notified when it is complete, which destroys the property of local-
ity. However, unlike reference tracking schemes, tracing can collect
garbage that belongs to distributed cycles. Tracing algorithms are
some of the most successful on uniprocessor machines, but their
poor locality and increased complexity make their extension to a
distributed environment less appealing.

Each individual machine can still utilize its own local collector
to reclaim garbage that is not referenced by other machines. Trac-
ing is then used to identify the remaining garbage objects. As long
as each local collector is complete, the global tracer need only con-
sider references between different machines.

3.1 Basic Global Tracing

Tracing algorithms generally operate in two distinct phases. The
first phase, or mark phase, traverses all objects reachable from the
roots, such as global variables and pointers on the run-time stack.
The second phase, or sweep phase, reclaims all objects that were
not marked by the first phase, as they must be garbage.

In a simple scheme [MA84], a machine that is running low on
storage space may initiate garbage collection by sending a request
to some controlling machine, orcoordinator. The coordinator en-
sures that all machines suspend their mutators, so that the reference
graph cannot be modified during the marking phase. Each machine
then marks all its live objects, and sends mark request messages
for any remote reference it encounters. Machines alternate between
an activestate, where they are marking objects, and anidle state.
Mark messages may only be sent by active machines, and receipt of
a mark message by an idle machine makes it active again. When all
machines are idle, the mark phase is complete. General distributed
termination detection algorithms can detect when all machines are
idle, though more complicated schemes may use custom methods
that are less expensive, or that deal with mutator concurrency better.

After the mark phase is complete, each machine resumes its mu-
tator and begins its sweep phase. Because all the objects reclaimed
in the sweep phase are not reachable from live objects, there is
no mutator contention for them, so no synchronization needs to be
done.

As an initial approach, this method does not seem to be very sat-
isfactory. Because it requires the cooperation of every machine in
the system, it is neither fault-tolerant or scalable. In addition, even
if only one machine needs to reclaim garbage, all other machines
are forced to do so as well. It also does not allow any work to be
done while the mark phase is in progress. Synchronization of the
mark phase itself requires all idle machines to wait until the last one
is finished to resume doing useful work. The next few subsections
will cover how some of these problems can be alleviated.

3.2 Marking-tree collector

One of the earliest distributed tracing collectors, the marking-tree
collector, is based upon a concurrent version of the mark and sweep
algorithm for uniprocessor systems [HK82]. Unlike the naı̈ve ap-
proach, identification of garbage and mutator operations execute
concurrently.

It is assumed that there is a single root of the entire distributed
reference graph, from which marking begins. Each machine main-
tains a queue of mark tasks and mutator tasks, which it executes
in turn. During a mark task, additional mark tasks may be created
for objects that are not already marked, forming a tree. When a
mark task completes, it spawns an up-tree-task. A mark task is not
complete until it has received an up-tree-task for each mark task it
spawned. When the root receives all of its up-tree-tasks, the mark-
ing phase is complete. This tree requires a large space overhead,
proportional to the number of live objects in the system. This can be
extended to a computation with more than one root by constructing
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a tree from each root, and declaring termination only when every
root’s mark task is complete.

Objects are marked with one of three colors.

• A whiteobject has not yet been visited by the marking phase,
and will be considered garbage if it is still white when the
mark phase terminates.

• A gray object has been visited by the mark phase, and has
spawned mark tasks for each reference it contains. Once all
of its mark tasks are completed a gray object is colored black.

• A blackobject has either been allocated after the mark phase
began, or was previously gray, and has had all its mark tasks
completed. Black objects have been visited by the collector
and need not be visited again. At the end of the mark phase,
all live objects are black.

Mutator tasks and mark tasks compete to modify objects, lock-
ing all the objects they intend to modify. Mutator operations must
preserve the invariants associated with an object’s color, which can
introduce significant delays. For example, copying a reference to a
white object into a black object requires that the mark task for the
white object be executed (not just queued) and spawn its up-tree-
task, which could cause large portions of the reference graph on
many machines to be traversed.

However, the algorithm does allow some mutator concurrency,
though the mark phase must still be synchronized across every ma-
chine.

3.3 The Emerald System

The Emerald system is also based upon a three color tracer, but
attempts to provide better mutator concurrency and achieve com-
pleteness despite temporarily unavailable machines [JJ92]. Muta-
tor concurrency is achieved with anobject-faultmechanism akin
to a virtual memory system’s page-fault. Instead of preventing the
copying of a white reference into a black object explicitly, this sys-
tem imposes a read barrier that protects all gray objects. Attempting
to traverse a reference to a gray object causes a fault, wherein the
collector shades all the objects reachable from it gray and colors the
object black. An object is colored black as soon as all its referents
are colored gray, instead of waiting for them to be colored black as
well. This prevents large portions of the reference graph from being
traversed to satisfy a single attempted reference of a gray object.

Since a black object may never have a reference to a white object,
and all gray objects are colored black before allowing the mutator
to read them, the mutator may never obtain a reference to a white
object to copy to a black one. To avoid arbitrary communication
delays while waiting for a remote object to be colored gray, each
machine also maintains a non-resident gray set. This set contains
remote references for which mark messages have been sent, but
not acknowledged. They are treated as references to gray objects,
though the shading of the actual objects may be postponed. Once
the remote site does color them gray, it acknowledges the mark mes-
sage, and they are removed from the non-resident gray set. Finally,
to prevent a black object from traversing one of these references to
a remote object that is still white, objects that are remotely invoked
are also colored gray before the invocation proceeds.

Because only one level of objects is colored before a gray object
colors itself black, the diffusing tree algorithm from the previous
subsection cannot be used to detect termination of the mark phase.
Instead, termination is detected using a two-phase commit protocol
that is resilient to process and message failures, but requires each
process to know of every other process in the system, which detracts
from scalability.

3.4 Tracing with Time-stamps

Time-stamps can also be used in a fashion similar to the colors of
previous examples [Hug85]. Instead of marking an object with a
color, it is marked with a time-stamp. The mark phase essentially
runs continuously, so that the time-stamps of live objects contin-
uously increase. The time-stamps of garbage, however, eventu-
ally stop increasing. A global threshold is then computed, so that
objects with a time-stamp below that threshold can be safely re-
claimed.

The actual marking operations can be built directly into the local
collector, provided it is also some form of tracing collector. Each
machine keeps a clock, such as Lamport’s logical clock, and records
the start time of a local collection, called theGC-time. Local roots
are then time-stamped with this time, while public objects keep
the last time-stamp placed in them, or the time-stamp from when
they were created if they have not been marked before. The local
collector then propagates these time-stamps throughout the local
machine, so that all remote references are marked with the largest
time-stamp of any object from which they are reachable. This can
be achieved by processing mark requests in descending order of
their time-stamps. The local collector is responsible for allowing
mutator concurrency, so that standard uniprocessor techniques can
be used.

These time-stamps are then forwarded to their corresponding re-
mote objects intime-stampingmessages, and their current time-
stamps are replaced if smaller, similar to the mark messages of
a standard tracer. Each machine also maintains a local threshold
value, called aredotime-stamp. Whenever a time-stamp is replaced
and the redo value is larger than the old time-stamp, the redo time-
stamp is reduced to the object’s old time-stamp. Whenever a site
completes a local collection and receives acknowledgement mes-
sages for all the time-stamping messages it sent out (and has not
received any additional time-stamping messages), it sets its redo
value to the GC-time. The global minimum of these redo values is
then the global threshold, below which objects may be reclaimed.
This propagation of time-stamps can be seen as multiple, concur-
rent mark phases operating in parallel. As the global threshold in-
creases, it can be assumed that the mark phases corresponding to
time-stamps below it have completed.

However, computing this global threshold requires a costly ter-
mination detection algorithm, and involves the cooperation of every
machine, which means that the algorithm has just as poor locality as
other tracers. Furthermore, if even a single process fails, the global
threshold can never increase beyond its last reported redo value,
which means that collection will eventually stop. Even if a process
is merely slow, or rarely triggers a local collection, the threshold
can be prevented from increasing far enough for other machines to
collect needed garbage, regardless of the fact that the slow machine
might not even have any remote references.

3.5 Logically Centralized Tracing

Instead of having each machine participate in the tracing and try to
piece together the results from other machines, another approach is
to off-load this task to some centralized service. As each machine
performs its local collections, it informs the centralized service of
the remote references it contains. Periodically, a machine asks the
centralized service if any of its public objects that are not locally
reachable still have a remote reference to them. If not, the object
can be reclaimed.

Garbage cycles that span machines are collected using time-
stamps, as in the previous section. Every object that could be re-
motely reachable is time-stamped with the last time it was accessi-
ble from some machine. The centralized service maintains a copy
of the time-stamps, and computes the threshold time, avoiding a
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costly termination detection algorithm. Unlike the previous section,
the time-stamps are used only to collect cyclic garbage.

The centralized service can be replicated to achieve fault-
tolerance, however this does not aid scalability. As the number of
processes increases, the service must still communicate with all of
them in order to collect any garbage. Furthermore, it requires stor-
age proportional to the total number of public objects in the entire
system.

4 Hybrid Schemes

Reference tracking systems have good locality and can be made
fault-tolerant, and they are prompt and highly concurrent. Their
main drawback is that they cannot collect cyclic garbage. Trac-
ing algorithms, on the other hand, are complete, but they are not
scalable, and they are not very prompt, since an entire trace must
complete before any garbage can be collected.

Some systems trade off completeness for efficiency and fault-
tolerance, assuming that distributed cycles are uncommon enough
to be ignored. This may be true for short-lived systems, or if there
is sufficient memory to allow storage leaks without excessive pag-
ing. However, for long-lived distributed systems, even small leaks
accumulate over time and are unacceptable. Furthermore, systems
commonly create cycles for such things as client-server communi-
cation, replication, or mobile computing. Without a cyclic garbage
collector, such cycles must be broken manually, and there is no
good methodology of doing this [Rod98].

The obvious solution is to try to use reference counting to collect
acyclic garbage, and a tracing algorithm to collect just the cyclic
garbage. However, this still has the same drawbacks as a stand-
alone, tracing collector, only on a smaller scale.

4.1 Tracing in Groups

One algorithm attempts to use groups of processes to alleviate the
problems of scalability and fault-tolerance associated with standard
tracing algorithms, as mentioned in the previous section [LQP92].
Reference counting is used to collect all acyclic garbage, while a
mark-and-sweep collector is used to collect garbage cycles within
a group. However, groups are not fixed. Instead, groups can be
configured dynamically, and can overlap with other groups. Collec-
tions from different groups can run on the same machine in parallel,
though this requires more computation by the local collector.

This algorithm gives a rough approximation of locality, since
garbage cycles contained in a single group can be collected with-
out the cooperation of machines outside the group. Fault-tolerance
is achieved, since even if a machine faults the remaining machines
can still form a group and continue the trace. Promptness is also
improved, since small groups can collect small cycles without wait-
ing for a trace to complete in all the machines in the system. The
main problem with the algorithm is that no clear method of form-
ing groups is presented. A tree-like hierarchy of groups is suggested
to ensure that every cycle is covered by some group. However, the
smallest group containing a particular cycle may still contain a large
number of machines.

4.2 Local Tracing

Local tracing algorithms also combine a reference counting
algorithm–weighted reference counting–with a tracing algorithm
[JL92, MKI+95]. Unlike previous examples, tracing does not be-
gin from the roots of the reference graph, but from objects that are
suspected of being garbage. Suspect objects must be chosen by
some heuristic. The proposed heuristic was to trace any object that

had just had a reference to it deleted, though this is clearly very ex-
pensive. This tracing is similar to an earlier technique, called trial
deletion [Ves87].

The tracing proceeds by copying the reference counter of the
objects reachable from the suspect object, and then decrementing
them as if the suspect object had been deleted. If, at the end of
the trace, the suspect’s counter has also been reduced to zero, then
it was actually garbage, and can be deleted. This algorithm only
approximates locality, since some of the traced objects may actually
have been live. However, it is more scalable than global tracing,
because the entire reference graph does not need to be traversed,
but instead only those objects whose counts drop to zero and their
immediate neighbors.

The initial algorithm also had the drawback that the local collec-
tor was required to be based on reference counting [JL92], though
a later proposal eliminated this problem [MKI+95]. The algorithm
must also ensure that two different traces do not try to modify an
object’s count simultaneously. This requires either a global syn-
chronization method that ensures that only one trace is performed
at a time, or extra storage to keep a separate count for every trace.
Both solutions are likely to be too expensive in practice.

4.3 Partial Tracing

Another algorithm, called partial tracing, resolves some of the is-
sues that remain with tracing in groups and local tracing [Rod98].
It uses reference listing to collect acyclic garbage, and also identi-
fies suspect objects using some heuristic, and performs a trace from
there to collect garbage cycles. Instead of using trial deletion to
detect if an object belongs to a garbage cycle, a three-phase mark-
and-sweep tracer is used.

The first phase marks red all objects that are reachable from
the suspect object, but which are not reachable from a local root.
These objects are said to belong to thesuspect sub-graph. The
second phase, called the scan phase, colors objects green which
are reachable from outside the group of objects marked red by the
first phase. These objects can easily be detected by remembering
which machines sent an object a mark red message, comparing this
to its incoming reference list, and then propagating this information
throughout the suspect sub-graph. These objects are the ones con-
servatively estimated to be live. Marks are propagated from incom-
ing remote references to outgoing remote references by the local
garbage collector, which is assumed to be tracing based. The final
phase, a sweep phase, reclaims all the objects that were marked red
by the first phase, but not marked green by the second phase.

The advantage of this algorithm is that different partial traces
can cooperate. If two traces meet in the mark red phase, then they
form a group of cooperating traces, neither of which will proceed
to the scan phase until both have completed their mark red phases.
As additional traces meet, the group grows, so that two traces are in
the same group if their suspect sub-graphs intersect. If a trace in the
mark red phase meets another in the scan or sweep phases, it can
safely assume it has no garbage cycles through that part of the sub-
graph. If the two traces contained objects on a common garbage
cycle, then the second trace would had to have met the first during
its mark red phase, and would not have proceeded to its scan phase.

During the mark red and sweep phases, there is no contention
between the mutator and the tracing algorithm, so no synchroniza-
tion is required. Mutator concurrency is achieved during the scan
phase by imposing a write barrier during the first local step on each
machine, which detects changes in reachability between incoming
remote references and outgoing remote references. After the first
local step, as mark green messages propagate between machines
a remote barrier marks green any red object which has one of its
remote references traversed, along with any outgoing remote ref-
erences which were reachable from that red object. The remote
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barrier is less expensive than the write barrier, however the write
barrier is necessary at the beginning of the phase, since red objects
could have acquired new local roots, or the connectivity between in-
coming and outgoing remote references could have changed during
the mark red phase.

This method provides a clear mechanism for forming groups of
machines (those encountered in the mark red phase) which is de-
fined by the shape of the reference graph. However, it still has
only an approximation of locality, since the mark red phase may
trace through live objects (namely, those marked green in the scan
phase). Completeness can be traded off against locality by limiting
the extent of the mark red phase, or by limiting which traces can
join a group. This tends to increase promptness, fault-tolerance,
and scalability, at the cost of floating garbage, which may accumu-
late over time. No clear method to tell when these tradeoffs should
be made is presented.

Promptness and fault-tolerance are also very dependent upon the
heuristic chosen to identify suspects. Promptness is obviously af-
fected, since the heuristic may impose long delays between the time
an object becomes garbage and the time it becomes suspect, in or-
der to avoid wasted work. Fault-tolerance is also affected, since
if a machine belonging to a group fails, then the current trace will
fail. A subsequent trace might succeed, if the failed machine did
not contain any objects on a garbage cycle, because the new trace
would not include the failed machine in the group. However, the
heuristic controls the next time an object participating in a failed
trace becomes suspect.

4.4 Train Collection

The train algorithm is an adaptation of another uniprocessor algo-
rithm which is complete, concurrent and scalable [HMMM97]. It
partitions the address space into disjoint regions calledcars, each
of which resides on a single machine. Again, a local collector re-
claims garbage cycles within a car, but to collect garbage which
spans more than one car, cars are grouped intotrains. Collection
proceeds in a train by moving the reachable objects to other trains.
The remaining objects in the train are cyclic garbage, and can be
reclaimed.

Reference listing is used to keep track of which cars contain ref-
erences to an object. The same protocol is used to notify an object
when a reference to it has been moved from one car or train to an-
other. Cars in a train form a ring, with the creator of the train as
the master. In order to join a train, an car communicates with the
master, who informs the other cars in the train. In order to leave a
train, leavemessages are propagated around the ring. Any number
of leave messages may be propagated simultaneously, but they may
not pass each other. In either case, only the machines containing
cars in the train are involved.

When there are no references into a train from cars outside the
train, the entire train can be collected. This is detected using a dis-
tributed termination detection protocol that only involves machines
in the train. Special handling is required to account for cars that
wish to join or leave the train while this algorithm is running.

The algorithm achieves better locality than some of the previ-
ous examples, since only those cars in a single train are required
to collect the garbage cycles in it. This implies good locality and
better promptness than global tracing algorithms. However, this is
still not optimal, since a single train may contain more than one
garbage cycle. Fault-tolerance is achieved to the degree that failure
of a machine in one train does not hinder the collection of garbage
in another train, however the algorithm would need to be extended
to handle failures within a single train. Only the reference listing
operations need to be synchronized with the mutator, which gives
the algorithm good concurrency. The major drawback is the mes-
sage complexity of moving an object to a new car or train, which

requires updating all the old references to the object.

4.5 Timestamp Packet Distribution

A slightly different approach to distributed garbage collection is to
attempt to construct causality information between mutator events
which modify the reference graph [LC97]. Knowing the causal his-
tory of these events allows garbage to be detected that otherwise
would require some global state. This is a direct method of iden-
tifying garbage, like reference counting, though the propagation of
the causal history of an object is akin to tracing with time-stamps.

Causal relations between events can be represented using vector
times, which maintain a given machine’s view of the time at every
process in the system when the event occurred. This information
is propagated between machines whenever a message is sent, by
updating the time at a remote machine if it is less than that contained
in the message. The underlying reference listing scheme circulates
these approximations until it can be determined that an object is no
longer reachable from a root.

The algorithm has all the benefits of reference tracking, in addi-
tion to being complete, yet has none of the drawbacks of tracing.
Vector time propagation is only required to pass through a garbage
cycle in order to collect it, giving this algorithm perfect locality.
However, every object must maintain a set of vector times corre-
sponding to the paths it is reachable from, and each vector time is
proportional to the total number of machines in the system. The
corresponding space overhead is therefore very large, and hinders
scalability. The algorithm is also very complicated, and some issues
with mutator concurrency remain unclear.

4.6 Object Migration

Object migration attempts to collect garbage cycles between ma-
chines by moving all objects on a cycle to the same machine
[Bis77, ML95, GF93]. From there, the local collector can detect
the garbage and reclaim it. Again, a heuristic is used to determine
when an object is suspected of belonging to a garbage cycle. Sus-
pect objects are then migrated to one of the machines that refer to
them.

This mechanism also exhibits perfect locality, since only the ma-
chines that originally contained the garbage items are required to
migrate them to a single machine. However, it has a number of se-
rious drawbacks, as well. Migrating objects can create additional
indirection objects to allow it to traverse its old references, and
eliminating these indirections requires additional messages. Also,
migration is an expensive operation, which may require the trans-
mission of large amounts of data that is likely to merely be thrown
away. This is aggravated by the fact that an object may need to be
migrated several times before the cycle it is on is consolidated in a
single machine. Migration may also overload a single machine with
a large collection of garbage objects before any can be reclaimed.
Finally, object migration must be supported in the first place. In a
heterogeneous network, different computer architectures may make
this extremely difficult in practice.

4.7 Back Tracing

Back tracing is a variation of local tracing that preserves locality.
Reference listing is used to collect acyclic garbage, and a heuristic
identifies the suspect objects that remain [Fuc95, RRR97, ML97].
However, instead of following the references contained in a sus-
pect object, the tracing algorithm instead traverses back along the
referencesto the suspect object. If no roots are found among the
objects that can reach the suspect, then all the traced objects are
garbage, and can be reclaimed. Faulty machines encountered in the
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back trace are assumed to contain live objects, which makes the al-
gorithm safe in the presence of failures. Message identifiers and
acknowledgements handle message duplication or loss.

When introduced, back tracing had four main challenges to over-
come [Fuc95]:

• A good heuristic is required to detect suspect objects. This
same challenge is faced by many of the hybrid algorithms,
and is addressed below.

• There is considerable overhead on the local collector in com-
puting the backwards reference information. A later proposal
introduces an algorithm which only visits each object once
[ML97]. However, the space required for storing full reacha-
bility information between incoming and outgoing references
is prohibitive. This can be made tolerable by restricting traces
to suspect objects, but this only increases the dependence on
a good heuristic for identifying suspects. Furthermore, it re-
quires knowing which incoming references come from sus-
pect objects, which requires additional messages. Caching of
back information may avoid re-computation for objects that
have not changed between traces, however this does not help
the space overhead.

• Multiple back tracings must be synchronized with each other.
The current literature allows multiple tracings to exist inde-
pendently, but provides no means for overlapping tracings to
share information and avoid repeated work. One author sug-
gests imposing a total ordering on the different tracings, and
blocking lower priority ones until higher priority ones have
completed [Fuc95]. This alleviates some extra work in the
case that the objects being traced are in fact garbage, provided
the highest priority trace is the first to encounter an object. If a
lower priority trace arrives first, it will have already traversed
part of the graph that must now be re-traversed by the higher
priority trace. If an object is actually live, then every trace
will still traverse it.

• The back tracing must be synchronized with the mutators. Re-
cent work demonstrates that this can be done by adding a bar-
rier to reference creation and remote method invocation, with-
out imposing any additional remote synchronization [ML97].

Back tracing’s good locality, fault-tolerance and concurrency
make it attractive as a complete solution. However, the wasted work
by repeated tracing and the space overhead could prove excessive
in real applications. Another problem is that the mutator could in-
definitely create new backwards paths while a trace is in progress,
which would prevent it from ever terminating. This would destroy
promptness, and garbage would accumulate until the system ex-
hausted its storage. However this situation is likely to be rare, and
can be avoided by abandoning the trace after traversing a large num-
ber of references (wasting the work).

4.8 Heuristics

Many of the hybrid algorithms perform their tracing not from the
roots of the reference graph, but from objects they suspect of be-
ing garbage. For these algorithms, it is very important that a good
heuristic be used to determine when an object is suspect, as wrongly
suspecting an object can lead to a good deal of wasted work. The
heuristic originally proposed for local tracing was to suspect any
object that had a pointer to it deleted. This heuristic was not just
limited to when remote references where deleted, but applied to any
pointer to any object. If only remote references were considered,
modifications to the object graph on a single machine could discon-
nect a cycle from the live portion of the graph without causing a
remote reference to be deleted. This is clearly far too expensive.

One property every heuristic should have is that no suspect object
should be reachable from a root on the same local machine. This
information can be computed by the local garbage collector, and
does not require any message passing to determine. Clearly any
object that does not satisfy this condition is not garbage, so it can
be added to any heuristic.

The simplest heuristic is to use this as the only condition for sus-
pect objects. However, it is believed that in long-lived distributed
systems there are many objects that are not locally reachable, but
still live [ML95]. This could lead to an unbounded number of failed
traces.

To alleviate this problem, imposing a delay between traces has
been suggested [GF93]. This delay could be increased with each
failed trace, similar to generational schemes from uniprocessor al-
gorithms, which take advantage of the fact that objects which have
survived previous collections are far less likely to be garbage than
newly allocated objects. However, the same patterns may not hold
on long-lived distributed systems, where it is more expensive to
create and use distributed objects. Thus, it may be likely that many
objects are not accessed for long periods of time. In this case, such a
delay would hurt promptness, since it would be imposed on most of
the objects in the system, while still wasting an unbounded, albeit
relatively smaller, amount of work on failed traces.

Another technique, called thedistance heuristic, is stable for un-
changing portions of the reference graph [ML95]. That is, so long
as the structure of the reference graph does not change, it does not
cause any new traces to begin. However, it uses messages in order
to determine this information, so it is more costly than previously
suggested heuristics.

The idea is to estimate the shortest “distance” of an object from
any root, where the distance is measured as the minimum number of
remote references that must be traversed to reach the object. Each
public object maintains a distance for each remote reference to it.
Newly created remote references have a conservative estimate of
one. Roots also have an associated distance, which is always zero.
The local collector propagates distance estimates from local roots
and public objects to remote references. Changes in the distance
estimate of a remote reference are sent to the object it refers to,
which updates its estimate accordingly. The observation is that for
live objects, the distance estimate eventually stabilizes at the ac-
tual distance. However, for garbage cycles, the distance estimate
continuously increases.

This is similar to tracing with time-stamps, however it does not
suffer from some of the drawbacks. Mainly, the failure of a node
does not prevent the distance estimates of objects in a garbage cycle
not involving that node from continuing to increase. This allows the
system to set an arbitrary suspicion threshold distance. Objects with
a distance estimate above the threshold are considered suspect. The
threshold can be modified dynamically if too many live objects are
being traced, or even on a per-object basis. Furthermore, multiple
thresholds can provide multiple levels of suspicion. For example,
back tracing can use one threshold to allow objects to start a trace,
and a smaller threshold to allow the trace to pass through an object,
which helps alleviate the presence of multiple simultaneous back
tracings on a single cycle, and reduces the required space overhead.

There are still several problems with the distance heuristic, how-
ever. One is that it sends extra messages for all remotely reachable
objects, regardless of whether they are likely to be garbage or not,
e.g. whether or not they are also locally reachable. Another is that
every cycle, no matter the size, must propagate at least as many
messages as the (conservatively large) threshold value before be-
coming suspect. This means even a cycle involving two or three
objects has to do the same work as a cycle involving hundreds or
thousands in order to be collected. The effect is to trade one form
of wasted work for another, sacrificing promptness as well. For al-
gorithms which only approximate locality, such as partial tracing,
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or which involve a significant amount of work per trace, such as
object migration, this trade-off might be acceptable.

5 Conclusion

As has already been noted, reference tracking systems have good
locality, are prompt, and highly concurrent. The reference list-
ing variant is also completely fault-tolerant. The only drawback is
that they are not complete, since they cannot collect cyclic garbage.
Tracing algorithms provide completeness, but very little else. They
are not prompt, and exhibit extremely poor locality.

Hybrid schemes offer a compromise between the two, and are
probably the best area for further research. There are two important
ideas that arise repeatedly in hybrid algorithms. The first is organiz-
ing processes into small groups. The second is the idea of applying
tracing to suspected garbage objects instead of known live ones.

The first idea is seen in sections 4.1 and 4.3. Small cooperat-
ing groups of processes provide better promptness, scalability, and
fault-tolerance than a single global tracer. However, the organiza-
tion of processes into groups is a non-trivial matter. If the groups
do not coincide with the distribution of cyclic garbage, then the co-
operation of many groups may be required to collect it. The mark
phase of [Rod98] gives a method of constructing groups by tracing
from suspect objects, but suggests that these may be too large in
general. Several factors are mentioned that should be considered
when limiting the size of these groups, however no clear heuristics
are presented for evaluating when a machine should be added to a
group, or when two groups should merge. Developing such heuris-
tics, and comparing them in simulations or on actual systems would
clear up some of these issues.

Examples of tracing from suspect objects is found in sections
4.2, 4.3, 4.6 and 4.7. In a pure tracing environment this is not
possible, but with reference listing an object has more information
about where it is reachable from. This makes it possible to de-
termine if an object is garbage without examining the entire refer-
ence graph. Again, this provides better promptness, scalability, and
fault-tolerance. Of these methods, back tracing, whose fundamental
principle is based on this observation, provides the best locality and
communication overhead. However, there are still some unresolved
issues with back tracing, such as the cooperation of multiple traces
and preventing the tracer from following indefinitely long chains
of backwards links. Methods for resolving these two issues would
certainly be of interest.

The other obvious requirement for this idea to be successful are
good heuristics. Very little is known about the behavior of long-
lived distributed systems, which hinders the development of accu-
rate heuristics, and comparisons between them. However, it is fairly
certain that the naı̈ve heuristics are too inaccurate, causing many
unnecessary traces. But the distance heuristic requires many extra
messages, especially for live objects and portions of the reference
graph that are changing frequently. Furthermore, its uniform de-
lay, even for small cycles of garbage, hurts its promptness. A good
heuristic would operate entirely from local information, and would
suspect garbage objects immediately. The best place for it to obtain
information would be from failed traces. Since each machine has
some knowledge of the outcome of a trace, the heuristic could use
this to refine its view of the global state.

Garbage collection is a much harder problem in a distributed en-
vironment than with a single address space. The lack of any consis-
tent, global state and the increased cost of communication compli-
cate the task. Although developing solutions which work is fairly
straightforward, making them complete, fault-tolerant, and unob-
trusive is not. Hybrid algorithms that combine reference counting
and tracing techniques seem to be the most promising candidates.
However, many of these rely on heuristics and assumptions about
the behavior of long-lived distributed systems to achieve efficiency.

In order to tell how accurate these assumptions are, performance
evaluations on real-world applications are necessary.
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fosśe. SSP chains: Robust, distributed references
supporting acyclic garbage collection. Rapports de
Recherche 1799, Institut National de la Recherche en
Informatique et Automatique, November 1992.

[Sha91] Marc Shapiro. A fault-tolerant, scalable, low-
overhead distributed garbage collection protocol. In
Proceedings of the Tenth Symposium on Reliable Dis-
tributed Systems, Pisa, September 1991.

[Ves87] Stephen C. Vestal.Garbage Collection: An Exercise
in Distributed, Fault-Tolerant Programming. PhD
thesis, University of Washington, Seattle, WA, 1987.

[Wei63] J. Weizenbaum. Symmetric list processor.Communi-
cations of the ACM, 6(9):524–544, September 1963.

[Wei90] P. Weis. The CAML reference manual, version 2.6.1.
Technical Report 121, INRIA-Rocquencourt, 1990.

[Wil92] Paul R. Wilson. Uniprocessor garbage collection
techniques. InProceedings of the International
Workshop on Memory Management, volume 637 of
Lecture Notes in Computer Science, St. Malo, France,
September 1992. Springer-Verlag.

[WW87] Paul Watson and Ian Watson. An efficient garbage
collection scheme for parallel computer architec-
tures. In Jacobus W. de Bakker, L. Nijman, and
Philip C. Treleaven, editors,PARLE’87 Parallel Ar-
chitectures and Languages Europe, volume 259 of
Lecture Notes in Computer Science, pages 432–443,
Eindhoven, The Netherlands, June 1987. Springer-
Verlag.


