NP-Complete Problems

T. M. Murali

April 14, 21, 2008

Proving Problems $\mathcal{N} \mathcal{P}$-Complete

- Claim: If Y is $\mathcal{N P}$-Complete and $X \in \mathcal{N P}$ such that $Y \leq_{P} X$, then X is $\mathcal{N} \mathcal{P}$-Complete.

Proving Problems $\mathcal{N} \mathcal{P}$-Complete

- Claim: If Y is $\mathcal{N} \mathcal{P}$-Complete and $X \in \mathcal{N P}$ such that $Y \leq_{P} X$, then X is $\mathcal{N} \mathcal{P}$-Complete.
- Given a new problem X, a general strategy for proving it $\mathcal{N} \mathcal{P}$-Complete is

Proving Problems $\mathcal{N} \mathcal{P}$-Complete

- Claim: If Y is $\mathcal{N} \mathcal{P}$-Complete and $X \in \mathcal{N} \mathcal{P}$ such that $Y \leq_{P} X$, then X is $\mathcal{N} \mathcal{P}$-Complete.
- Given a new problem X, a general strategy for proving it $\mathcal{N} \mathcal{P}$-Complete is

1. Prove that $X \in \mathcal{N P}$.
2. Select a problem Y known to be $\mathcal{N P}$-Complete.
3. Prove that $Y \leq_{p} X$.

Proving Problems $\mathcal{N} \mathcal{P}$-Complete

- Claim: If Y is $\mathcal{N P}$-Complete and $X \in \mathcal{N P}$ such that $Y \leq_{P} X$, then X is $\mathcal{N} \mathcal{P}$-Complete.
- Given a new problem X, a general strategy for proving it $\mathcal{N} \mathcal{P}$-Complete is

1. Prove that $X \in \mathcal{N P}$.
2. Select a problem Y known to be $\mathcal{N P}$-Complete.
3. Prove that $Y \leq_{p} X$.

- If we use Karp reductions, we can refine the strategy:

1. Prove that $X \in \mathcal{N P}$.
2. Select a problem Y known to be $\mathcal{N P}$-Complete.
3. Consider an arbitrary instance s_{Y} of problem Y. Show how to construct, in polynomial time, an instance s_{X} of problem X such that
(a) If $s_{Y} \in Y$, then $s_{X} \in X$ and
(b) If $s_{X} \in X$, then $s_{Y} \in Y$.

3-SAT is $\mathcal{N} \mathcal{P}$-Complete

- Why is 3-SAT in NP?

3-SAT is $\mathcal{N} \mathcal{P}$-Complete

- Why is 3-SAT in NP?
- Circuit Satisfiability $\leq_{p} 3$-SAT.

1. Given an instance of Circuit Satisfiability, create an instance of SAT, in which each clause has at most three variables.
2. Convert this instance of SAT into one of 3-SAT.

Circuit Satisfiability \leq_{p} 3-SAT: Transformation

- Given an arbitrary circuit K, associate each node v with a Boolean variable x_{v}.
- Encode the requirements of each gate as a clause.

Circuit Satisfiability \leq_{p} 3-SAT: Transformation

- Given an arbitrary circuit K, associate each node v with a Boolean variable x_{v}.
- Encode the requirements of each gate as a clause.
- node v has \neg and edge entering from node u : guarantee that $x_{v}=\overline{x_{u}}$ using clauses

Circuit Satisfiability \leq_{P} 3-SAT: Transformation

- Given an arbitrary circuit K, associate each node v with a Boolean variable x_{v}.
- Encode the requirements of each gate as a clause.
- node v has \neg and edge entering from node u : guarantee that $x_{v}=\overline{x_{u}}$ using clauses $\left(x_{v} \vee x_{u}\right)$ and $\left(\overline{x_{v}} \vee \overline{x_{u}}\right)$.
- node v has \vee and edges entering from nodes u and w : ensure $x_{v}=x_{u} \vee x_{w}$ using clauses

Circuit Satisfiability \leq_{P} 3-SAT: Transformation

- Given an arbitrary circuit K, associate each node v with a Boolean variable x_{v}.
- Encode the requirements of each gate as a clause.
- node v has \neg and edge entering from node u : guarantee that $x_{v}=\overline{x_{u}}$ using clauses $\left(x_{v} \vee x_{u}\right)$ and $\left(\overline{x_{v}} \vee \overline{x_{u}}\right)$.
- node v has \vee and edges entering from nodes u and w : ensure $x_{v}=x_{u} \vee x_{w}$ using clauses $\left(x_{v} \vee \overline{x_{u}}\right),\left(x_{v} \vee \overline{x_{w}}\right)$, and $\left(\overline{x_{v}} \vee x_{u} \vee x_{w}\right)$.

Circuit Satisfiability \leq_{P} 3-SAT: Transformation

- Given an arbitrary circuit K, associate each node v with a Boolean variable x_{v}.
- Encode the requirements of each gate as a clause.
- node v has \neg and edge entering from node u : guarantee that $x_{v}=\overline{x_{u}}$ using clauses $\left(x_{v} \vee x_{u}\right)$ and $\left(\overline{x_{v}} \vee \overline{x_{u}}\right)$.
- node v has \vee and edges entering from nodes u and w : ensure $x_{v}=x_{u} \vee x_{w}$ using clauses $\left(x_{v} \vee \overline{x_{u}}\right),\left(x_{v} \vee \overline{x_{w}}\right)$, and $\left(\overline{x_{v}} \vee x_{u} \vee x_{w}\right)$.
- node v has \wedge and edges entering from nodes u and w : ensure $x_{v}=x_{u} \wedge x_{w}$ using clauses

Circuit Satisfiability \leq_{P} 3-SAT: Transformation

- Given an arbitrary circuit K, associate each node v with a Boolean variable x_{v}.
- Encode the requirements of each gate as a clause.
- node v has \neg and edge entering from node u : guarantee that $x_{v}=\overline{x_{u}}$ using clauses $\left(x_{v} \vee x_{u}\right)$ and $\left(\overline{x_{v}} \vee \overline{x_{u}}\right)$.
- node v has \vee and edges entering from nodes u and w : ensure $x_{v}=x_{u} \vee x_{w}$ using clauses $\left(x_{v} \vee \overline{x_{u}}\right),\left(x_{v} \vee \overline{x_{w}}\right)$, and $\left(\overline{x_{v}} \vee x_{u} \vee x_{w}\right)$.
- node v has \wedge and edges entering from nodes u and w : ensure $x_{v}=x_{u} \wedge x_{w}$ using clauses $\left(\overline{x_{v}} \vee x_{u}\right),\left(\overline{x_{v}} \vee x_{w}\right)$, and $\left(x_{v} \vee \overline{x_{u}} \vee \overline{x_{w}}\right)$.

Circuit Satisfiability \leq_{P} 3-SAT: Transformation

- Given an arbitrary circuit K, associate each node v with a Boolean variable x_{v}.
- Encode the requirements of each gate as a clause.
- node v has \neg and edge entering from node u : guarantee that $x_{v}=\overline{x_{u}}$ using clauses $\left(x_{v} \vee x_{u}\right)$ and $\left(\overline{x_{v}} \vee \overline{x_{u}}\right)$.
- node v has \vee and edges entering from nodes u and w : ensure $x_{v}=x_{u} \vee x_{w}$ using clauses $\left(x_{v} \vee \overline{x_{u}}\right),\left(x_{v} \vee \overline{x_{w}}\right)$, and $\left(\overline{x_{v}} \vee x_{u} \vee x_{w}\right)$.
- node v has \wedge and edges entering from nodes u and w : ensure $x_{v}=x_{u} \wedge x_{w}$ using clauses $\left(\overline{x_{v}} \vee x_{u}\right),\left(\overline{x_{v}} \vee x_{w}\right)$, and $\left(x_{v} \vee \overline{x_{u}} \vee \overline{x_{w}}\right)$.
- Constants at sources: single-variable clauses.

Circuit Satisfiability \leq_{P} 3-SAT: Transformation

- Given an arbitrary circuit K, associate each node v with a Boolean variable x_{v}.
- Encode the requirements of each gate as a clause.
- node v has \neg and edge entering from node u : guarantee that $x_{v}=\overline{x_{u}}$ using clauses $\left(x_{v} \vee x_{u}\right)$ and $\left(\overline{x_{v}} \vee \overline{x_{u}}\right)$.
- node v has \vee and edges entering from nodes u and w : ensure $x_{v}=x_{u} \vee x_{w}$ using clauses $\left(x_{v} \vee \overline{x_{u}}\right),\left(x_{v} \vee \overline{x_{w}}\right)$, and $\left(\overline{x_{v}} \vee x_{u} \vee x_{w}\right)$.
- node v has \wedge and edges entering from nodes u and w : ensure $x_{v}=x_{u} \wedge x_{w}$ using clauses $\left(\overline{x_{v}} \vee x_{u}\right),\left(\overline{x_{v}} \vee x_{w}\right)$, and $\left(x_{v} \vee \overline{x_{u}} \vee \overline{x_{w}}\right)$.
- Constants at sources: single-variable clauses.
- Output: if o is the output node, use the clause $\left(x_{o}\right)$.

Circuit Satisfiability \leq_{p} 3-SAT: Proof

- Prove that K is equivalent to the instance of SAT.
- K is satisfiable \rightarrow clauses are satisfiable.

Circuit Satisfiability \leq_{P} 3-SAT: Proof

- Prove that K is equivalent to the instance of SAT.
- K is satisfiable \rightarrow clauses are satisfiable.
- clauses are satisfiable $\rightarrow K$ is satisfiable.

Circuit Satisfiability \leq_{P} 3-SAT: Proof

- Prove that K is equivalent to the instance of SAT.
- K is satisfiable \rightarrow clauses are satisfiable.
- clauses are satisfiable $\rightarrow K$ is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.

Circuit Satisfiability \leq_{p} 3-SAT: Proof

- Prove that K is equivalent to the instance of SAT.
- K is satisfiable \rightarrow clauses are satisfiable.
- clauses are satisfiable $\rightarrow K$ is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.
- Converting instance of SAT to an instance of 3-SAT.

Circuit Satisfiability \leq_{P} 3-SAT: Proof

- Prove that K is equivalent to the instance of SAT.
- K is satisfiable \rightarrow clauses are satisfiable.
- clauses are satisfiable $\rightarrow K$ is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.
- Converting instance of SAT to an instance of 3-SAT.
- Create four new variables $z_{1}, z_{2}, z_{3}, z_{4}$ such that any satisfying assignment will have $z_{1}=z_{2}=0$ by adding clauses

Circuit Satisfiability \leq_{P} 3-SAT: Proof

- Prove that K is equivalent to the instance of SAT.
- K is satisfiable \rightarrow clauses are satisfiable.
- clauses are satisfiable $\rightarrow K$ is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.
- Converting instance of SAT to an instance of 3-SAT.
- Create four new variables $z_{1}, z_{2}, z_{3}, z_{4}$ such that any satisfying assignment will have $z_{1}=z_{2}=0$ by adding clauses ($\overline{z_{i}} \vee z_{3} \vee z_{4}$), $\left(\overline{z_{i}} \vee \overline{z_{3}} \vee z_{4}\right)$, $\left(\overline{z_{i}} \vee z_{3} \vee \overline{z_{4}}\right)$, and $\left(\overline{z_{i}} \vee \overline{z_{3}} \vee \overline{z_{4}}\right)$, for $i=1$ and $i=2$.

Circuit Satisfiability \leq_{P} 3-SAT: Proof

- Prove that K is equivalent to the instance of SAT.
- K is satisfiable \rightarrow clauses are satisfiable.
- clauses are satisfiable $\rightarrow K$ is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.
- Converting instance of SAT to an instance of 3-SAT.
- Create four new variables $z_{1}, z_{2}, z_{3}, z_{4}$ such that any satisfying assignment will have $z_{1}=z_{2}=0$ by adding clauses ($\overline{z_{i}} \vee z_{3} \vee z_{4}$), $\left(\overline{z_{i}} \vee \overline{z_{3}} \vee z_{4}\right),\left(\overline{z_{i}} \vee z_{3} \vee \overline{z_{4}}\right)$, and $\left(\overline{z_{i}} \vee \overline{z_{3}} \vee \overline{z_{4}}\right)$, for $i=1$ and $i=2$.
- If a clause has a single term t, replace the clause with $\left(t \vee z_{1} \vee z_{2}\right)$.

Circuit Satisfiability \leq_{P} 3-SAT: Proof

- Prove that K is equivalent to the instance of SAT.
- K is satisfiable \rightarrow clauses are satisfiable.
- clauses are satisfiable $\rightarrow K$ is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.
- Converting instance of SAT to an instance of 3-SAT.
- Create four new variables $z_{1}, z_{2}, z_{3}, z_{4}$ such that any satisfying assignment will have $z_{1}=z_{2}=0$ by adding clauses ($\overline{z_{i}} \vee z_{3} \vee z_{4}$), $\left(\overline{z_{i}} \vee \overline{z_{3}} \vee z_{4}\right)$, $\left(\overline{z_{i}} \vee z_{3} \vee \overline{z_{4}}\right)$, and $\left(\overline{z_{i}} \vee \overline{z_{3}} \vee \overline{z_{4}}\right)$, for $i=1$ and $i=2$.
- If a clause has a single term t, replace the clause with $\left(t \vee z_{1} \vee z_{2}\right)$.
- If a clause has a two terms t and t^{\prime}, replace the clause with $t \vee t^{\prime} \vee z_{1}$.

More $\mathcal{N} \mathcal{P}$-Complete problems

- Circuit Satisfiability is $\mathcal{N} \mathcal{P}$-Complete.
- We just showed that Circuit Satisfiability $\leq_{P} 3$-SAT.
- We know that

3 -SAT \leq_{p} Independent $\operatorname{Set} \leq_{p}$ Vertex Cover \leq_{p} Set Cover

- All these problems are in $\mathcal{N P}$.
- Therefore, Independent Set, Vertex Cover, and Set Cover are $\mathcal{N} \mathcal{P}$-Complete.

Hamiltonian Cycle

- Problems we have seen so far involve searching over subsets of a collection of objects.
- Another type of computationally hard problem involves searching over the set of all permutations of a collection of objects.

Hamiltonian Cycle

- Problems we have seen so far involve searching over subsets of a collection of objects.
- Another type of computationally hard problem involves searching over the set of all permutations of a collection of objects.
- In a directed graph $G(V, E)$, a cycle C is a Hamiltonian cycle if C visits each vertex exactly once.

Hamiltonian Cycle
INSTANCE: A directed graph G.
QUESTION: Does G contain a Hamiltonian cycle?

Hamiltonian Cycle is $\mathcal{N} \mathcal{P}$-Complete

- Why is the problem in $\mathcal{N P}$?

Hamiltonian Cycle is $\mathcal{N} \mathcal{P}$-Complete

- Why is the problem in $\mathcal{N P}$?
- Claim: 3-SAT \leq_{p} Hamiltonian Cycle.

Hamiltonian Cycle is $\mathcal{N} \mathcal{P}$-Complete

- Why is the problem in $\mathcal{N P}$?
- Claim: 3-SAT \leq_{p} Hamiltonian Cycle.
- Consider an arbitrary instance of 3 -SAT with variables $x_{1}, x_{2}, \ldots, x_{n}$ and clauses $C_{1}, C_{2}, \ldots C_{k}$.
- Strategy:

1. Construct a graph G with $O(n k)$ nodes and edges and 2^{n} Hamiltonian cycles with a one-to-one correspondence with 2^{n} truth assignments.
2. Add nodes to impose constraints arising from clauses.
3. Construction takes $O(n k)$ time.

- G contains n paths $P_{1}, P_{2}, \ldots P_{n}$.
- Each P_{i} contains $b=3 k+3$ nodes $v_{i, 1}, v_{i, 2}, \ldots v_{i, b}$.

3-SAT \leq_{P} Hamiltonian Cycle: Constructing G

3-SAT \leq_{p} Hamiltonian Cycle: Modelling clauses

- Consider the clause $C_{1}=x_{1} \vee \overline{x_{2}} \vee x_{3}$.

Figure 8.8 The reduction from 3-SAT to Hamiltonian Cycle: part 2.

3-SAT \leq_{p} Hamiltonian Cycle: Proof

- 3-SAT instance is satisfiable $\rightarrow G$ has a Hamiltonian cycle.

3-SAT \leq_{p} Hamiltonian Cycle: Proof

- 3-SAT instance is satisfiable $\rightarrow G$ has a Hamiltonian cycle.
- Construct a Hamiltonian cycle \mathcal{C} as follows:
- If $x_{i}=1$, traverse P_{i} from left to right in \mathcal{C}.
- Otherwise, traverse P_{i} from right to left in \mathcal{C}.
- For each clause C_{j}, there is at least one term set to 1 . If the term is x_{i}, splice c_{j} into \mathcal{C} using edge from $v_{i, 3 j}$ and edge to $v_{i, 3 j+1}$. Analogous construction if term is $\overline{x_{i}}$.

3-SAT \leq_{p} Hamiltonian Cycle: Proof

- 3-SAT instance is satisfiable $\rightarrow G$ has a Hamiltonian cycle.
- Construct a Hamiltonian cycle \mathcal{C} as follows:
- If $x_{i}=1$, traverse P_{i} from left to right in \mathcal{C}.
- Otherwise, traverse P_{i} from right to left in \mathcal{C}.
- For each clause C_{j}, there is at least one term set to 1 . If the term is x_{i}, splice c_{j} into \mathcal{C} using edge from $v_{i, 3 j}$ and edge to $v_{i, 3 j+1}$. Analogous construction if term is $\overline{x_{i}}$.
- G has a Hamiltonian cycle $\mathcal{C} \rightarrow 3$-SAT instance is satisfiable.
- If \mathcal{C} enters c_{j} on an edge from $v_{i, 3 j}$, it must leave c_{j} along the edge to $v_{i, 3 j+1}$.
- Analogous statement if \mathcal{C} enters c_{j} on an edge from $v_{i, 3 j+1}$.

3-SAT \leq_{p} Hamiltonian Cycle: Proof

- 3-SAT instance is satisfiable $\rightarrow G$ has a Hamiltonian cycle.
- Construct a Hamiltonian cycle \mathcal{C} as follows:
- If $x_{i}=1$, traverse P_{i} from left to right in \mathcal{C}.
- Otherwise, traverse P_{i} from right to left in \mathcal{C}.
- For each clause C_{j}, there is at least one term set to 1 . If the term is x_{i}, splice c_{j} into \mathcal{C} using edge from $v_{i, 3 j}$ and edge to $v_{i, 3 j+1}$. Analogous construction if term is $\overline{x_{i}}$.
- G has a Hamiltonian cycle $\mathcal{C} \rightarrow 3$-SAT instance is satisfiable.
- If \mathcal{C} enters c_{j} on an edge from $v_{i, 3 j}$, it must leave c_{j} along the edge to $v_{i, 3 j+1}$.
- Analogous statement if \mathcal{C} enters c_{j} on an edge from $v_{i, 3 j+1}$.
- Nodes immediately before and after c_{j} in \mathcal{C} are themselves connected by an edge e in G.

3-SAT \leq_{p} Hamiltonian Cycle: Proof

- 3-SAT instance is satisfiable $\rightarrow G$ has a Hamiltonian cycle.
- Construct a Hamiltonian cycle \mathcal{C} as follows:
- If $x_{i}=1$, traverse P_{i} from left to right in \mathcal{C}.
- Otherwise, traverse P_{i} from right to left in \mathcal{C}.
- For each clause C_{j}, there is at least one term set to 1 . If the term is x_{i}, splice c_{j} into \mathcal{C} using edge from $v_{i, 3 j}$ and edge to $v_{i, 3 j+1}$. Analogous construction if term is $\overline{x_{i}}$.
- G has a Hamiltonian cycle $\mathcal{C} \rightarrow 3$-SAT instance is satisfiable.
- If \mathcal{C} enters c_{j} on an edge from $v_{i, 3 j}$, it must leave c_{j} along the edge to $v_{i, 3 j+1}$.
- Analogous statement if \mathcal{C} enters c_{j} on an edge from $v_{i, 3 j+1}$.
- Nodes immediately before and after c_{j} in \mathcal{C} are themselves connected by an edge e in G.
- If we remove all such edges e from \mathcal{C}, we get a Hamiltonian cycle \mathcal{C}^{\prime} in $G-\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$.
- Use \mathcal{C}^{\prime} to construct truth assignment to variables.
- Argue that the assignment is a satisfying assignment.

The Traveling Salesman Problem

- A salesman must visit n cities $v_{1}, v_{2}, \ldots v_{n}$ starting at home city v_{1}.
- Salesman must find a tour, an order in which to visit each city exactly once, and return home.
- Goal is to find as short a tour as possible.

The Traveling Salesman Problem

- A salesman must visit n cities $v_{1}, v_{2}, \ldots v_{n}$ starting at home city v_{1}.
- Salesman must find a tour, an order in which to visit each city exactly once, and return home.
- Goal is to find as short a tour as possible.
- For every pair of cities v_{i} and v_{j}, let $d\left(v_{i}, v_{j}\right)>0$ be the distance from v_{i} to v_{j}.
- A tour is a permutation $v_{i_{1}}=v_{1}, v_{i_{2}}, \ldots v_{i_{n}}$.
- The length of the tour is $\sum_{j=1}^{n-1} d\left(v_{i_{j}} v_{i_{j+1}}\right)+d\left(v_{i_{n}}, v_{i_{1}}\right)$.

The Traveling Salesman Problem

- A salesman must visit n cities $v_{1}, v_{2}, \ldots v_{n}$ starting at home city v_{1}.
- Salesman must find a tour, an order in which to visit each city exactly once, and return home.
- Goal is to find as short a tour as possible.
- For every pair of cities v_{i} and v_{j}, let $d\left(v_{i}, v_{j}\right)>0$ be the distance from v_{i} to v_{j}.
- A tour is a permutation $v_{i_{1}}=v_{1}, v_{i_{2}}, \ldots v_{i_{n}}$.
- The length of the tour is $\sum_{j=1}^{n-1} d\left(v_{i_{j}} v_{i_{j+1}}\right)+d\left(v_{i_{n}}, v_{i_{1}}\right)$.

Travelling Salesman
INSTANCE: A set V of n cities, a function $d: V \times V \rightarrow \mathbb{R}^{+}$, and a number $D>0$.

QUESTION: Is there a tour of length at most D ?

Travelling Salesman is $\mathcal{N} \mathcal{P}$-Complete

- Why is the problem in $\mathcal{N} \mathcal{P}$-Complete?

Travelling Salesman is $\mathcal{N} \mathcal{P}$-Complete

- Why is the problem in $\mathcal{N} \mathcal{P}$-Complete?
- Claim: Hamiltonian Cycle \leq_{P} Travelling Salesman.

Travelling Salesman is $\mathcal{N} \mathcal{P}$-Complete

- Why is the problem in $\mathcal{N} \mathcal{P}$-Complete?
- Claim: Hamiltonian Cycle \leq_{P} Travelling Salesman.
- Given a directed graph $G(V, E)$,
- Create a city v_{i} for each node $i \in V$.
- Define $d\left(v_{i}, v_{j}\right)=1$ if $(i, j) \in E$.
- Define $d\left(v_{i}, v_{j}\right)=2$ if $(i, j) \notin E$.

Travelling Salesman is $\mathcal{N} \mathcal{P}$-Complete

- Why is the problem in $\mathcal{N} \mathcal{P}$-Complete?
- Claim: Hamiltonian Cycle $\leq p$ Travelling Salesman.
- Given a directed graph $G(V, E)$,
- Create a city v_{i} for each node $i \in V$.
- Define $d\left(v_{i}, v_{j}\right)=1$ if $(i, j) \in E$.
- Define $d\left(v_{i}, v_{j}\right)=2$ if $(i, j) \notin E$.
- Claim: G has a Hamiltonian cycle iff the instance of Travelling Salesman has a tour of length at most

Travelling Salesman is $\mathcal{N} \mathcal{P}$-Complete

- Why is the problem in $\mathcal{N} \mathcal{P}$-Complete?
- Claim: Hamiltonian Cycle $\leq p$ Travelling Salesman.
- Given a directed graph $G(V, E)$,
- Create a city v_{i} for each node $i \in V$.
- Define $d\left(v_{i}, v_{j}\right)=1$ if $(i, j) \in E$.
- Define $d\left(v_{i}, v_{j}\right)=2$ if $(i, j) \notin E$.
- Claim: G has a Hamiltonian cycle iff the instance of Travelling Salesman has a tour of length at most n.

Special Cases and Extensions that are $\mathcal{N} \mathcal{P}$-Complete

- Hamiltonian Cycle for undirected graphs.
- Hamiltonian Path for directed and undirected graphs.
- Travelling Salesman with symmetric distances (by reducing Hamiltonian Cycle for undirected graphs to it).
- Travelling Salesman with distances defined by points on the plane.

3-Dimensional Matching

Bipartite Matching
INSTANCE: Disjoint sets X, Y, each of size n, and a set
$T \subseteq X \times Y$ of pairs
QUESTION: Is there a set of n pairs in T such that each element of $X \cup Y$ is contained in exactly one of these pairs?

3-Dimensional Matching

- 3-Dimensional Matching is a harder version of Bipartite Matching.

Bipartite Matching
INSTANCE: Disjoint sets X, Y, each of size n, and a set
$T \subseteq X \times Y$ of pairs
QUESTION: Is there a set of n pairs in T such that each element of $X \cup Y$ is contained in exactly one of these pairs?

3-Dimensional Matching

- 3-Dimensional Matching is a harder version of Bipartite Matching.

3-Dimensional Matching
INSTANCE: Disjoint sets X, Y, and Z, each of size n, and a set
$T \subseteq X \times Y \times Z$ of triples
QUESTION: Is there a set of n triples in T such that each element of $X \cup Y \cup Z$ is contained in exactly one of these triples?

3-Dimensional Matching

- 3-Dimensional Matching is a harder version of Bipartite Matching.

3-Dimensional Matching
INSTANCE: Disjoint sets X, Y, and Z, each of size n, and a set $T \subseteq X \times Y \times Z$ of triples
QUESTION: Is there a set of n triples in T such that each element of $X \cup Y$ is contained in exactly one of these triples?

- Easy to show 3-Dimensional Matching \leq_{p} Set Cover and 3-Dimensional Matching \leq_{p} Set Packing.

3-Dimensional Matching is $\mathcal{N P}$-Complete

- Why is the problem in $\mathcal{N} \mathcal{P}$?

3-Dimensional Matching is $\mathcal{N P}$-Complete

- Why is the problem in $\mathcal{N} \mathcal{P}$?
- Show that 3 -SAT $\leq_{P} 3$-Dimensional Matching.
- Strategy:
- Start with an instance of 3 -SAT with n variables and k clauses.
- Create a gadget for each variable x_{i} that encodes the choice of truth assignment to x_{i}.
- Add gadgets that encode constraints imposed by clauses.

3-SAT \leq_{P} 3-Dimensional Matching: Variables

- Each x_{i} corresponds to a variable gadget i with $2 k$ core elements $A_{i}=\left\{a_{i, 1}, a_{i, 2}, \ldots a_{i, 2 k}\right\}$ and $2 k$ tips $B_{i}=\left\{b_{i, 1}, b_{i, 2}, \ldots b_{i, 2 k}\right\}$.
- For each $1 \leq j \leq 2 k$, variable gadget i includes a triple $t_{i j}=\left(a_{i, j}, a_{i, j+1}, b_{i, j}\right)$.
- A triple is even if j is even. Otherwise, the triple is odd.
- Analogous definition for tips.

3-SAT \leq_{p} 3-Dimensional Matching: Variables

- Each x_{i} corresponds to a variable gadget i with $2 k$ core elements $A_{i}=\left\{a_{i, 1}, a_{i, 2}, \ldots a_{i, 2 k}\right\}$ and $2 k$ tips $B_{i}=\left\{b_{i, 1}, b_{i, 2}, \ldots b_{i, 2 k}\right\}$.
- For each $1 \leq j \leq 2 k$, variable gadget i includes a triple $t_{i j}=\left(a_{i, j}, a_{i, j+1}, b_{i, j}\right)$.
- A triple is even if j is even. Otherwise, the triple is odd.
- Analogous definition for tips.
- Only these triples contain elements in A_{i}.

3-SAT \leq_{p} 3-Dimensional Matching: Variables

- Each x_{i} corresponds to a variable gadget i with $2 k$ core elements $A_{i}=\left\{a_{i, 1}, a_{i, 2}, \ldots a_{i, 2 k}\right\}$ and $2 k$ tips $B_{i}=\left\{b_{i, 1}, b_{i, 2}, \ldots b_{i, 2 k}\right\}$.
- For each $1 \leq j \leq 2 k$, variable gadget i includes a triple $t_{i j}=\left(a_{i, j}, a_{i, j+1}, b_{i, j}\right)$.
- A triple is even if j is even. Otherwise, the triple is odd.
- Analogous definition for tips.
- Only these triples contain elements in A_{i}.
- In any perfect matching,

3-SAT \leq_{p} 3-Dimensional Matching: Variables

- Each x_{i} corresponds to a variable gadget i with $2 k$ core elements $A_{i}=\left\{a_{i, 1}, a_{i, 2}, \ldots a_{i, 2 k}\right\}$ and $2 k$ tips $B_{i}=\left\{b_{i, 1}, b_{i, 2}, \ldots b_{i, 2 k}\right\}$.
- For each $1 \leq j \leq 2 k$, variable gadget i includes a triple $t_{i j}=\left(a_{i, j}, a_{i, j+1}, b_{i, j}\right)$.
- A triple is even if j is even. Otherwise, the triple is odd.
- Analogous definition for tips.
- Only these triples contain elements in A_{i}.
- In any perfect matching, we either use all the even triples in gadget i or all the odd triples in the gadget.
- If we use the even triples,

3-SAT \leq_{p} 3-Dimensional Matching: Variables

- Each x_{i} corresponds to a variable gadget i with $2 k$ core elements $A_{i}=\left\{a_{i, 1}, a_{i, 2}, \ldots a_{i, 2 k}\right\}$ and $2 k$ tips $B_{i}=\left\{b_{i, 1}, b_{i, 2}, \ldots b_{i, 2 k}\right\}$.
- For each $1 \leq j \leq 2 k$, variable gadget i includes a triple $t_{i j}=\left(a_{i, j}, a_{i, j+1}, b_{i, j}\right)$.
- A triple is even if j is even. Otherwise, the triple is odd.
- Analogous definition for tips.
- Only these triples contain elements in A_{i}.
- In any perfect matching, we either use all the even triples in gadget i or all the odd triples in the gadget.
- If we use the even triples, odd tips are free and vice-versa.

3-SAT \leq_{p} 3-Dimensional Matching: Variables

- Each x_{i} corresponds to a variable gadget i with $2 k$ core elements $A_{i}=\left\{a_{i, 1}, a_{i, 2}, \ldots a_{i, 2 k}\right\}$ and $2 k$ tips $B_{i}=\left\{b_{i, 1}, b_{i, 2}, \ldots b_{i, 2 k}\right\}$.
- For each $1 \leq j \leq 2 k$, variable gadget i includes a triple $t_{i j}=\left(a_{i, j}, a_{i, j+1}, b_{i, j}\right)$.
- A triple is even if j is even. Otherwise, the triple is odd.
- Analogous definition for tips.
- Only these triples contain elements in A_{i}.
- In any perfect matching, we either use all the even triples in gadget i or all the odd triples in the gadget.
- If we use the even triples, odd tips are free and vice-versa.
- Even triples used, odd tips free $\equiv x_{i}=0$; odd triples used, even tips free $\equiv x_{i}=1$.

3-SAT \leq_{p} 3-Dimensional Matching: Clauses

- Even triples used, odd tips free $\equiv x_{i}=0$; odd triples used, even tips free $\equiv x_{i}=1$.
- Consider the clause $C_{1}=x_{1} \vee \overline{x_{2}} \vee x_{3}$.

3-SAT \leq_{p} 3-Dimensional Matching: Clauses

- Even triples used, odd tips free $\equiv x_{i}=0$; odd triples used, even tips free $\equiv x_{i}=1$.
- Consider the clause $C_{1}=x_{1} \vee \overline{x_{2}} \vee x_{3}$.
- C_{1} says "The matching on the cores of the gadgets should leave the even tips of gadget 1 free; or it should leave the odd tips of gadget 2 free; or it should leave the even tips of gadget 3 free."

3-SAT \leq_{p} 3-Dimensional Matching: Clauses

- Even triples used, odd tips free $\equiv x_{i}=0$; odd triples used, even tips free $\equiv x_{i}=1$.
- Consider the clause $C_{1}=x_{1} \vee \overline{x_{2}} \vee x_{3}$.
- C_{1} says "The matching on the cores of the gadgets should leave the even tips of gadget 1 free; or it should leave the odd tips of gadget 2 free; or it should leave the even tips of gadget 3 free."
- Clause gadget j for clause C_{j} contains two core elements $P_{j}=\left\{p_{j}, p_{j}^{\prime}\right\}$ and three triples:
- If C_{j} contains x_{i}, add triple ($p_{j}, p_{j}^{\prime}, b_{i, 2 j}$).
- If C_{j} contains $\overline{x_{i}}$, add triple ($p_{j}, p_{j}^{\prime}, b_{i, 2 j-1}$).

3-SAT \leq_{p} 3-Dimensional Matching: Example

3-SAT \leq_{p} 3-Dimensional Matching: Proof

- Satisfying assignment \rightarrow matching.

3-SAT \leq_{p} 3-Dimensional Matching: Proof

- Satisfying assignment \rightarrow matching.
- Make appropriate choices for the core of each variable gadget.
- At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.

3-SAT \leq_{p} 3-Dimensional Matching: Proof

- Satisfying assignment \rightarrow matching.
- Make appropriate choices for the core of each variable gadget.
- At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
- We have not covered all the tips!

3-SAT \leq_{p} 3-Dimensional Matching: Proof

- Satisfying assignment \rightarrow matching.
- Make appropriate choices for the core of each variable gadget.
- At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
- We have not covered all the tips!
- Add $(n-1) k$ cleanup gadgets to allow the remaining $(n-1) k$ tips to be covered: cleanup gadget i contains two core elements $Q=\left\{q_{i}, q_{i}^{\prime}\right\}$ and triple $\left(q_{i}, q_{i}^{\prime}, b\right)$ for every tip b in variable gadget i.

3-SAT \leq_{p} 3-Dimensional Matching: Proof

- Satisfying assignment \rightarrow matching.
- Make appropriate choices for the core of each variable gadget.
- At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
- We have not covered all the tips!
- Add $(n-1) k$ cleanup gadgets to allow the remaining $(n-1) k$ tips to be covered: cleanup gadget i contains two core elements $Q=\left\{q_{i}, q_{i}^{\prime}\right\}$ and triple $\left(q_{i}, q_{i}^{\prime}, b\right)$ for every tip b in variable gadget i.
- Matching \rightarrow satisfying assignment.

3-SAT \leq_{p} 3-Dimensional Matching: Proof

- Satisfying assignment \rightarrow matching.
- Make appropriate choices for the core of each variable gadget.
- At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
- We have not covered all the tips!
- Add $(n-1) k$ cleanup gadgets to allow the remaining $(n-1) k$ tips to be covered: cleanup gadget i contains two core elements $Q=\left\{q_{i}, q_{i}^{\prime}\right\}$ and triple $\left(q_{i}, q_{i}^{\prime}, b\right)$ for every tip b in variable gadget i.
- Matching \rightarrow satisfying assignment.
- Matching chooses all even $a_{i j}\left(x_{i}=0\right)$ or all odd $a_{i j}\left(x_{i}=1\right)$.

3-SAT \leq_{p} 3-Dimensional Matching: Proof

- Satisfying assignment \rightarrow matching.
- Make appropriate choices for the core of each variable gadget.
- At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
- We have not covered all the tips!
- Add $(n-1) k$ cleanup gadgets to allow the remaining $(n-1) k$ tips to be covered: cleanup gadget i contains two core elements $Q=\left\{q_{i}, q_{i}^{\prime}\right\}$ and triple $\left(q_{i}, q_{i}^{\prime}, b\right)$ for every tip b in variable gadget i.
- Matching \rightarrow satisfying assignment.
- Matching chooses all even $a_{i j}\left(x_{i}=0\right)$ or all odd $a_{i j}\left(x_{i}=1\right)$.
- Is clause C_{j} satisfied?

3-SAT \leq_{p} 3-Dimensional Matching: Proof

- Satisfying assignment \rightarrow matching.
- Make appropriate choices for the core of each variable gadget.
- At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
- We have not covered all the tips!
- Add $(n-1) k$ cleanup gadgets to allow the remaining $(n-1) k$ tips to be covered: cleanup gadget i contains two core elements $Q=\left\{q_{i}, q_{i}^{\prime}\right\}$ and triple $\left(q_{i}, q_{i}^{\prime}, b\right)$ for every tip b in variable gadget i.
- Matching \rightarrow satisfying assignment.
- Matching chooses all even $a_{i j}\left(x_{i}=0\right)$ or all odd $a_{i j}\left(x_{i}=1\right)$.
- Is clause C_{j} satisfied? Core in clause gadget j is covered by some triple \Rightarrow other element in the triple must be a tip element from the correct odd/even set in the three variable gadgets corresponding to a term in C_{j}.

3-SAT \leq_{p} 3-Dimensional Matching: Finale

- Did we create an instance of 3-Dimensional Matching?

3-SAT \leq_{p} 3-Dimensional Matching: Finale

- Did we create an instance of 3-Dimensional Matching?
- We need three sets X, Y, and Z of equal size.

3-SAT \leq_{p} 3-Dimensional Matching: Finale

- Did we create an instance of 3-Dimensional Matching?
- We need three sets X, Y, and Z of equal size.
- How many elements do we have?
- $2 n k a_{i j}$ elements.
- $2 n k b_{i j}$ elements.
- $k p_{j}$ elements.
- $k p_{j}^{\prime}$ elements.
- $(n-1) k q_{i}$ elements.
- $(n-1) k q_{i}^{\prime}$ elements.

3-SAT \leq_{p} 3-Dimensional Matching: Finale

- Did we create an instance of 3-Dimensional Matching?
- We need three sets X, Y, and Z of equal size.
- How many elements do we have?
- $2 n k a_{i j}$ elements.
- $2 n k b_{i j}$ elements.
- $k p_{j}$ elements.
- $k p_{j}^{\prime}$ elements.
- $(n-1) k q_{i}$ elements.
- $(n-1) k q_{i}^{\prime}$ elements.
- X is the union of $a_{i j}$ with even j, the set of all p_{j} and the set of all q_{i}.
- Y is the union of $a_{i j}$ with odd j, the set if all p_{j}^{\prime} and the set of all q_{i}^{\prime}.
- Z is the set of all $b_{i j}$.

3-SAT \leq_{p} 3-Dimensional Matching: Finale

- Did we create an instance of 3-Dimensional Matching?
- We need three sets X, Y, and Z of equal size.
- How many elements do we have?
- $2 n k a_{i j}$ elements.
- $2 n k b_{i j}$ elements.
- $k p_{j}$ elements.
- $k p_{j}^{\prime}$ elements.
- $(n-1) k q_{i}$ elements.
- $(n-1) k q_{i}^{\prime}$ elements.
- X is the union of $a_{i j}$ with even j, the set of all p_{j} and the set of all q_{i}.
- Y is the union of $a_{i j}$ with odd j, the set if all p_{j}^{\prime} and the set of all q_{i}^{\prime}.
- Z is the set of all $b_{i j}$.
- Each triple contains exactly one element from X, Y, and Z.

Colouring maps

Colouring maps

- Any map can be coloured with four colours (Appel and Hakken, 1976).

Graph Colouring

- Given an undirected graph $G(V, E)$, a k-colouring of G is a function $f: V \rightarrow\{1,2, \ldots k\}$ such that for every edge $(u, v) \in E$, $f(u) \neq f(v)$.

Graph Colouring

- Given an undirected graph $G(V, E)$, a k-colouring of G is a function $f: V \rightarrow\{1,2, \ldots k\}$ such that for every edge $(u, v) \in E$, $f(u) \neq f(v)$.

Graph Colouring (k-Colouring)
INSTANCE: An undirected graph $G(V, E)$ and an integer $k>0$.
QUESTION: Does G have a k-colouring?

Applications of Graph Colouring

1. Job scheduling: assign jobs to n processors under constraints that certain pairs of jobs cannot be scheduled at the same time.
2. Compiler design: assign variables to k registers but two variables being used at the same time cannot be assigned to the same register.
3. Wavelength assignment: assign one of k transmitting wavelengths to each of n wireless devices. If two devices are close to each other, they must get different wavelengths.

2-Colouring

- How hard is 2-Colouring?

2-Colouring

- How hard is 2-Colouring?
- Claim: A graph is 2-colourable if and only if it is bipartite.

2-Colouring

- How hard is 2-Colouring?
- Claim: A graph is 2-colourable if and only if it is bipartite.
- Testing 2-colourability is possible in $O(|V|+|E|)$ time.

2-Colouring

- How hard is 2-Colouring?
- Claim: A graph is 2-colourable if and only if it is bipartite.
- Testing 2-colourability is possible in $O(|V|+|E|)$ time.
- What about 3-colouring? Is it easy to exhibit a certificate that a graph cannot be coloured with three colours?

Figure 8.10 A graph that is not 3-colorable.

3-Colouring is $\mathcal{N P}$-Complete

- Why is 3-Colouring in $\mathcal{N P}$?

3-Colouring is $\mathcal{N} \mathcal{P}$-Complete

- Why is 3-Colouring in $\mathcal{N P}$?
- 3-SAT $\leq_{P} 3$-Colouring.

3-SAT \leq_{P} 3-Colouring: Encoding Variables

- x_{i} corresponds to node v_{i} and $\overline{x_{i}}$ corresponds to node $\overline{v_{i}}$.

Figure 8.11 The beginning of the reduction for 3-Coloring.

3-SAT \leq_{p} 3-Colouring: Encoding Variables

Figure 8.11 The beginning of the reduction for 3-Coloring.

- x_{i} corresponds to node v_{i} and $\overline{x_{i}}$ corresponds to node $\overline{v_{i}}$.
- In any 3-Colouring, nodes v_{i} and $\overline{v_{i}}$ get a colour different from Base.
- True colour: colour assigned to the True node; False colour: colour assigned to the False node.
- Set x_{i} to 1 iff v_{i} gets the True colour.

3-SAT \leq_{p} 3-Colouring: Encoding Clauses

- Consider the clause $C_{1}=x_{1} \vee \overline{x_{2}} \vee x_{3}$.

3-SAT \leq_{p} 3-Colouring: Encoding Clauses

- Consider the clause $C_{1}=x_{1} \vee \overline{x_{2}} \vee x_{3}$.
- Attach a six-node subgraph for this clause to the rest of the graph.

Figure 8.12 Attaching a subgraph to represent the clause $x_{1} \vee \bar{x}_{2} \vee x_{3}$.

3-SAT \leq_{p} 3-Colouring: Encoding Clauses

- Consider the clause $C_{1}=x_{1} \vee \overline{x_{2}} \vee x_{3}$.
- Attach a six-node subgraph for this clause to the rest of the graph.
- Claim: Top node in the subgraph can be coloured in a 3-colouring iff one of $v_{1}, \overline{v_{2}}$, or v_{3} does not get the False colour.

3-SAT \leq_{p} 3-Colouring: Encoding Clauses

- Consider the clause $C_{1}=x_{1} \vee \overline{x_{2}} \vee x_{3}$.
- Attach a six-node subgraph for this clause to the rest of the graph.
- Claim: Top node in the subgraph can be coloured in a 3-colouring iff one of $v_{1}, \overline{v_{2}}$, or v_{3} does not get the False colour.
- Claim: Graph is 3-colourable iff instance of 3 -SAT is satisfiable.

Subset Sum

Subset Sum
INSTANCE: A set of n natural numbers $w_{1}, w_{2}, \ldots, w_{n}$ and a target W.
QUESTION: Is there a subset of $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ whose sum is W ?

Subset Sum

Subset Sum
INSTANCE: A set of n natural numbers $w_{1}, w_{2}, \ldots, w_{n}$ and a target W.
QUESTION: Is there a subset of $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ whose sum is W ?

- Subset Sum is a special case of the Knapsack Problem (see Chapter 6.4 of the textbook).

Subset Sum

Subset Sum
INSTANCE: A set of n natural numbers $w_{1}, w_{2}, \ldots, w_{n}$ and a target W.
QUESTION: Is there a subset of $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ whose sum is W ?

- Subset Sum is a special case of the Knapsack Problem (see Chapter 6.4 of the textbook).
- There is a dynamic programming algorithm for Subset Sum that runs in $O(n W)$ time.

Subset Sum

Subset Sum
INSTANCE: A set of n natural numbers $w_{1}, w_{2}, \ldots, w_{n}$ and a target W.
QUESTION: Is there a subset of $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ whose sum is W ?

- Subset Sum is a special case of the Knapsack Problem (see Chapter 6.4 of the textbook).
- There is a dynamic programming algorithm for Subset Sum that runs in $O(n W)$ time. This algorithm's running time is exponential in the size of the input.

Subset Sum

Subset Sum
INSTANCE: A set of n natural numbers $w_{1}, w_{2}, \ldots, w_{n}$ and a target W.
QUESTION: Is there a subset of $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ whose sum is W ?

- Subset Sum is a special case of the Knapsack Problem (see Chapter 6.4 of the textbook).
- There is a dynamic programming algorithm for Subset Sum that runs in $O(n W)$ time. This algorithm's running time is exponential in the size of the input.
- Claim: Subset Sum is $\mathcal{N P}$-Complete, 3-Dimensional Matching \leq_{p} Subset Sum.

Subset Sum

Subset Sum
INSTANCE: A set of n natural numbers $w_{1}, w_{2}, \ldots, w_{n}$ and a target W.
QUESTION: Is there a subset of $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ whose sum is W ?

- Subset Sum is a special case of the Knapsack Problem (see Chapter 6.4 of the textbook).
- There is a dynamic programming algorithm for Subset Sum that runs in $O(n W)$ time. This algorithm's running time is exponential in the size of the input.
- Claim: Subset Sum is $\mathcal{N P}$-Complete, 3-Dimensional Matching \leq_{p} Subset Sum.
- Caveat: Special case of Subset Sum in which W is bounded by a polynomial function of n is not $\mathcal{N} \mathcal{P}$-Complete (read pages 494-495 of your textbook).

Asymmetry of Certification

- Definition of efficient certification and $\mathcal{N} \mathcal{P}$ is fundamentally asymmetric:
- An input string s is a "yes" instance iff there exists a short string t such that $B(s, t)=$ yes.
- An input string s is a "no" instance iff for all short strings t, $B(s, t)=$ no.

Asymmetry of Certification

- Definition of efficient certification and $\mathcal{N P}$ is fundamentally asymmetric:
- An input string s is a "yes" instance iff there exists a short string t such that $B(s, t)=$ yes.
- An input string s is a "no" instance iff for all short strings t, $B(s, t)=$ no. The definition of $\mathcal{N P}$ does not guarantee a short proof for "no" instances.

co- $\mathcal{N} \mathcal{P}$

- For a decision problem X, its complementary problem \bar{X} is the set of strings s such that $s \in \bar{X}$ iff $s \notin X$.

co- $\mathcal{N P}$

- For a decision problem X, its complementary problem \bar{X} is the set of strings s such that $s \in \bar{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$,

co- $\mathcal{N P}$

- For a decision problem X, its complementary problem \bar{X} is the set of strings s such that $s \in \bar{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$, then $\bar{X} \in \mathcal{P}$.

co- $\mathcal{N P}$

- For a decision problem X, its complementary problem \bar{X} is the set of strings s such that $s \in \bar{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$, then $\bar{X} \in \mathcal{P}$.
- If $X \in \mathcal{N} \mathcal{P}$, then is $\bar{X} \in \mathcal{N} \mathcal{P}$?

co- $\mathcal{N P}$

- For a decision problem X, its complementary problem \bar{X} is the set of strings s such that $s \in \bar{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$, then $\bar{X} \in \mathcal{P}$.
- If $X \in \mathcal{N} \mathcal{P}$, then is $\bar{X} \in \mathcal{N} \mathcal{P}$? Unclear in general.
- A problem X belongs to the class co- $\mathcal{N} \mathcal{P}$ iff \bar{X} belongs to $\mathcal{N P}$.

co- $\mathcal{N P}$

- For a decision problem X, its complementary problem \bar{X} is the set of strings s such that $s \in \bar{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$, then $\bar{X} \in \mathcal{P}$.
- If $X \in \mathcal{N} \mathcal{P}$, then is $\bar{X} \in \mathcal{N} \mathcal{P}$? Unclear in general.
- A problem X belongs to the class co- $\mathcal{N} \mathcal{P}$ iff \bar{X} belongs to $\mathcal{N P}$.
- Open problem: Is $\mathcal{N P}=\operatorname{co}-\mathcal{N} \mathcal{P}$?

co- $\mathcal{N} \mathcal{P}$

- For a decision problem X, its complementary problem \bar{X} is the set of strings s such that $s \in \bar{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$, then $\bar{X} \in \mathcal{P}$.
- If $X \in \mathcal{N} \mathcal{P}$, then is $\bar{X} \in \mathcal{N} \mathcal{P}$? Unclear in general.
- A problem X belongs to the class co- $\mathcal{N} \mathcal{P}$ iff \bar{X} belongs to $\mathcal{N P}$.
- Open problem: Is $\mathcal{N P}=\operatorname{co}-\mathcal{N} \mathcal{P}$?
- Claim: If $\mathcal{N P} \neq \operatorname{co}-\mathcal{N} \mathcal{P}$ then $\mathcal{P} \neq \mathcal{N} \mathcal{P}$.

Good Characterisations: the Class $\mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$

- If a problem belongs to both $\mathcal{N P}$ and $\operatorname{co-} \mathcal{N P}$, then
- When the answer is yes, there is a short proof.
- When the answer is no, there is a short proof.

Good Characterisations: the Class $\mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$

- If a problem belongs to both $\mathcal{N P}$ and $\operatorname{co-} \mathcal{N} \mathcal{P}$, then
- When the answer is yes, there is a short proof.
- When the answer is no, there is a short proof.
- Problems in $\mathcal{N P} \cap$ co- $\mathcal{N} \mathcal{P}$ have a good characterisation.

Good Characterisations: the Class $\mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$

- If a problem belongs to both $\mathcal{N P}$ and $\operatorname{co-} \mathcal{N P}$, then
- When the answer is yes, there is a short proof.
- When the answer is no, there is a short proof.
- Problems in $\mathcal{N} \mathcal{P} \cap$ co- $\mathcal{N} \mathcal{P}$ have a good characterisation.
- Example is the problem of determining if a flow network contains a flow of value at least ν, for some given value of ν.
- Yes: construct a flow of value at least ν.
- No: demonstrate a cut with capacity less than ν.

Good Characterisations: the Class $\mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$

- If a problem belongs to both $\mathcal{N P}$ and $\operatorname{co-} \mathcal{N P}$, then
- When the answer is yes, there is a short proof.
- When the answer is no, there is a short proof.
- Problems in $\mathcal{N P} \cap \operatorname{co}-\mathcal{N P}$ have a good characterisation.
- Example is the problem of determining if a flow network contains a flow of value at least ν, for some given value of ν.
- Yes: construct a flow of value at least ν.
- No: demonstrate a cut with capacity less than ν.
- Claim: $\mathcal{P} \subseteq \mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$.

Good Characterisations: the Class $\mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$

- If a problem belongs to both $\mathcal{N P}$ and $\operatorname{co-} \mathcal{N} \mathcal{P}$, then
- When the answer is yes, there is a short proof.
- When the answer is no, there is a short proof.
- Problems in $\mathcal{N P} \cap \operatorname{co}-\mathcal{N P}$ have a good characterisation.
- Example is the problem of determining if a flow network contains a flow of value at least ν, for some given value of ν.
- Yes: construct a flow of value at least ν.
- No: demonstrate a cut with capacity less than ν.
- Claim: $\mathcal{P} \subseteq \mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$.
- Open problem: Is $\mathcal{P}=\mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$?

