Divide and Conquer Algorithms

T. M. Murali

February 18 and 20, 2008

Divide and Conquer Algorithms

- Study three divide and conquer algorithms:
- Counting inversions.
- Finding the closest pair of points.
- Integer multiplication.
- First two problems use clever conquer strategies.
- Third problem uses a clever divide strategy.

Motivation

- Collaborative filtering: match one user's preferences to those of other users.
- Meta-search engines: merge results of multiple search engines to into a better search result.

Motivation

- Collaborative filtering: match one user's preferences to those of other users.
- Meta-search engines: merge results of multiple search engines to into a better search result.
- Fundamental question: how do we compare a pair of rankings?

Motivation

- Collaborative filtering: match one user's preferences to those of other users.
- Meta-search engines: merge results of multiple search engines to into a better search result.
- Fundamental question: how do we compare a pair of rankings?
- Suggestion: two rankings are very similar if they have few inversions.

Motivation

- Collaborative filtering: match one user's preferences to those of other users.
- Meta-search engines: merge results of multiple search engines to into a better search result.
- Fundamental question: how do we compare a pair of rankings?
- Suggestion: two rankings are very similar if they have few inversions.
- Assume one ranking is the ordered list of integers from 1 to n.
- The other ranking is a permutation $a_{1}, a_{2}, \ldots, a_{n}$ of the integers from 1 to n.
- The second ranking has an inversion if there exist i, j such that $i<j$ but $a_{i}>a_{j}$.
- The number of inversions s is a measure of the difference between the rankings.
- Question also arises in statistics: Kendall's rank correlation of two lists of numbers is $1-2 s /(n(n-1))$.

Counting Inversions

Count Inversions
INSTANCE: A list $L=x_{1}, x_{2}, \ldots, x_{n}$ of distinct integers between
1 and n.
SOLUTION: The number of pairs $(i, j), 1 \leq i<j \leq n$ such
$a_{i}>a_{j}$.

Counting Inversions

Count Inversions
INSTANCE: A list $L=x_{1}, x_{2}, \ldots, x_{n}$ of distinct integers between
1 and n.
SOLUTION: The number of pairs $(i, j), 1 \leq i<j \leq n$ such
$a_{i}>a_{j}$.

Figure 5.4 Counting the number of inversions in the sequence $2,4,1,3,5$. Each crossing pair of line segments corresponds to one pair that is in the opposite order in the input list and the ascending list-in other words, an inversion.

Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers?

Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega\left(n^{2}\right)$. We cannot afford to compute each inversion explicitly.

Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega\left(n^{2}\right)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?

Counting Inversions: Algorithm

- How many inversions can be there in a list of n numbers? $\Omega\left(n^{2}\right)$. We cannot afford to compute each inversion explicitly.
- Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- Candidate algorithm:

1. Partition L into two lists A and B of size $n / 2$ each.
2. Recursively count the number of inversions in A.
3. Recursively count the number of inversions in B.
4. Count the number of inversions involving one element in A and one element in B.

Counting Inversions: Conquer Step

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.

Counting Inversions: Conquer Step

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!

Counting Inversions: Conquer Step

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-and-Count procedure:

Maintain a current pointer for each list.
Maintain a variable count initialised to 0 .
Initialise each pointer to the front of the list.
While both lists are nonempty:
Let a_{i} and b_{j} be the elements pointed to by the current pointers.
Append the smaller of the two to the output list.
If b_{j} is the smaller, increment count by the number of elements remaining in A.
Advance the current pointer in the list that the smaller element belonged to.
EndWhile
Append the rest of the non-empty list to the output.
Return count and the merged list.

Counting Inversions: Conquer Step

- Given lists $A=a_{1}, a_{2}, \ldots, a_{m}$ and $B=b_{1}, b_{2}, \ldots b_{m}$, compute the number of pairs a_{i} and b_{j} such $a_{i}>b_{j}$.
- Key idea: problem is much easier if A and B are sorted!
- Merge-and-Count procedure:

Maintain a current pointer for each list.
Maintain a variable count initialised to 0 .
Initialise each pointer to the front of the list.
While both lists are nonempty:
Let a_{i} and b_{j} be the elements pointed to by the current pointers. Append the smaller of the two to the output list. If b_{j} is the smaller, increment count by the number of elements remaining in A.
Advance the current pointer in the list that the smaller element belonged to.
EndWhile
Append the rest of the non-empty list to the output.
Return count and the merged list.

- Running time of this algorithm is $O(m)$.

Counting Inversions: Final Algorithm

```
Sort-and-Count(L)
    If the list has one element then
    there are no inversions
    Else
        Divide the list into two halves:
        A contains the first \lceiln/2\rceil elements
        B contains the remaining \lfloorn/2\rfloor elements
        (rA,A) = Sort-and-Count (A)
        (r, B) = Sort-and-Count (B)
        (r,L) = Merge-and-Count (A,B)
```

 Endif
 Return \(r=r_{A}+r_{B}+r\), and the sorted list \(L\)

Counting Inversions: Final Algorithm

```
Sort-and-Count(L)
    If the list has one element then
    there are no inversions
    Else
        Divide the list into two halves:
        A contains the first \lceiln/2\rceil elements
        B contains the remaining \lfloorn/2\rfloor elements
        (rA,A) = Sort-and-Count (A)
        (r, B) = Sort-and-Count(B)
        (r,L) = Merge-and-Count (A,B)
```

 Endif
 Return \(r=r_{A}+r_{B}+r\), and the sorted list \(L\)
 - Running time $T(n)$ of the algorithm is $O(n \log n)$ because $T(n) \leq 2 T(n / 2)+O(n)$.

Computational Geometry

- Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, Idots.
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, ...

Computational Geometry

- Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, Idots.
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, ...

Closest Pair of Points
INSTANCE: A set P of n points in the plane SOLUTION: The pair of points in P that are the closest to each other.

Computational Geometry

- Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, Idots.
- Started in 1975 by Shamos and Hoey.
- Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, ...

Closest Pair of Points
INSTANCE: A set P of n points in the plane
SOLUTION: The pair of points in P that are the closest to each other.

- At first glance, it seems any algorithm must take $\Omega\left(n^{2}\right)$ time.
- Shamos and Hoey figured out an ingenious $O(n \log n)$ divide and conquer algorithm.

Closest Pair: Set-up

- Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ with $p_{i}=\left(x_{i}, y_{i}\right)$.
- Use $d\left(p_{i}, p_{j}\right)$ to denote the Euclidean distance between p_{i} and p_{j}.
- Goal: find the pair of points p_{i} and p_{j} that minimise $d\left(p_{i}, p_{j}\right)$.

Closest Pair: Set-up

- Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ with $p_{i}=\left(x_{i}, y_{i}\right)$.
- Use $d\left(p_{i}, p_{j}\right)$ to denote the Euclidean distance between p_{i} and p_{j}.
- Goal: find the pair of points p_{i} and p_{j} that minimise $d\left(p_{i}, p_{j}\right)$.
- How do we solve the problem in 1D?

Closest Pair: Set-up

- Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ with $p_{i}=\left(x_{i}, y_{i}\right)$.
- Use $d\left(p_{i}, p_{j}\right)$ to denote the Euclidean distance between p_{i} and p_{j}.
- Goal: find the pair of points p_{i} and p_{j} that minimise $d\left(p_{i}, p_{j}\right)$.
- How do we solve the problem in 1D? Sort: closest pair must be adjacent in the sorted order.

Closest Pair: Set-up

- Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ with $p_{i}=\left(x_{i}, y_{i}\right)$.
- Use $d\left(p_{i}, p_{j}\right)$ to denote the Euclidean distance between p_{i} and p_{j}.
- Goal: find the pair of points p_{i} and p_{j} that minimise $d\left(p_{i}, p_{j}\right)$.
- How do we solve the problem in 1D? Sort: closest pair must be adjacent in the sorted order.
- The idea does not work in 2D.

Closest Pair: Algorithm Skeleton

1. Divide P into two sets Q and R of $n / 2$ points such that each point in Q has x-coordinate less than any point in R.
2. Recursively compute closest pair in Q and in R, respectively.

Closest Pair: Algorithm Skeleton

1. Divide P into two sets Q and R of $n / 2$ points such that each point in Q has x-coordinate less than any point in R.
2. Recursively compute closest pair in Q and in R, respectively.
3. Let δ_{1} be the distance computed for Q, δ_{2} be the distance computed for R, and $\delta=\min \left(\delta_{1}, \delta 2\right)$.
4. Compute pair (q, r) of points such that $q \in Q, r \in R, d(q, r)<\delta$ and $d(q, r)$ is the smallest possible.

Closest Pair: Algorithm Skeleton

1. Divide P into two sets Q and R of $n / 2$ points such that each point in Q has x-coordinate less than any point in R.
2. Recursively compute closest pair in Q and in R, respectively.
3. Let δ_{1} be the distance computed for Q, δ_{2} be the distance computed for R, and $\delta=\min \left(\delta_{1}, \delta 2\right)$.
4. Compute pair (q, r) of points such that $q \in Q, r \in R, d(q, r)<\delta$ and $d(q, r)$ is the smallest possible.

- How do we implement this step in $O(n)$ time?

Closest Pair: Conquer Step

Figure 5.6 The first level of recursion: The point set P is divided evenly into Q and R by the line L, and the closest pair is found on each side recursively.

- Line L passes through right-most point in Q.

Closest Pair: Conquer Step

Figure 5.6 The first level of recursion: The point set P is divided evenly into Q and R by the line L, and the closest pair is found on each side recursively.

- Line L passes through right-most point in Q.
- Claim: If there exist $q \in Q, r \in R$ such that $d(q, r)<\delta$, then q and r are both within distance δ of L.

Closest Pair: Conquer Step

Figure 5.6 The first level of recursion: The point set P is divided evenly into Q and R by the line L, and the closest pair is found on each side recursively.

- Line L passes through right-most point in Q.
- Claim: If there exist $q \in Q, r \in R$ such that $d(q, r)<\delta$, then q and r are both within distance δ of L.
- Let S be the set of points within distance δ of L and let S_{y} denote these points sorted by increasing y-coordinate.
- Claim: There exist $q \in Q, r \in R$ such that $d(q, r)<\delta$ if and only if there exist $s, s^{\prime} \in S$ such that $d\left(s, s^{\prime}\right)<\delta$.

Closest Pair: Packing Argument

- Intuition: if there are "too many" points in S that are closer than δ to each other, then there must be a pair in Q or in R that are less than δ apart.

Closest Pair: Packing Argument

- Intuition: if there are "too many" points in S that are closer than δ to each other, then there must be a pair in Q or in R that are less than δ apart.
- Claim: If there exist $s, s^{\prime} \in S$ such that $d\left(s, s^{\prime}\right)<\delta$ then s and s^{\prime} are at most 15 indices apart in S_{y}.

Closest Pair: Packing Argument

- Intuition: if there are "too many" points in S that are closer than δ to each other, then there must be a pair in Q or in R that are less than δ apart.
- Claim: If there exist $s, s^{\prime} \in S$ such that $d\left(s, s^{\prime}\right)<\delta$ then s and s^{\prime} are at most 15 indices apart in S_{y}.
- For a point $s \in S$, let s_{y} denote its y-coordinate.
- Converse of the claim: If there exist $s, s^{\prime} \in S$ such that s^{\prime} appears 16 or more indices after s in S_{y}, then $s_{y}^{\prime}-s_{y} \geq \delta$.

Closest Pair: Packing Argument

- Intuition: if there are "too many" points in S that are closer than δ to each other, then there must be a pair in Q or in R that are less than δ apart.
- Claim: If there exist $s, s^{\prime} \in S$ such that $d\left(s, s^{\prime}\right)<\delta$ then s and s^{\prime} are at most 15 indices apart in S_{y}.
- For a point $s \in S$, let s_{y} denote its y-coordinate.
- Converse of the claim: If there exist $s, s^{\prime} \in S$ such that s^{\prime} appears 16 or more indices after s in S_{y}, then $s_{y}^{\prime}-s_{y} \geq \delta$.
- Idea behind the proof: pack the plane with squares, argue that each square contains at most one point.

Figure 5.7 The portion of the plane close to the dividing line L, as analyzed in the proof of (5.10).

Closest Pair: Final Algorithm

```
Closest-Pair(P)
    Construct }\mp@subsup{P}{x}{}\mathrm{ and }\mp@subsup{P}{y}{}\quad(O(n\operatorname{log}n) time
    (P
```

Closest-Pair-Rec $\left(P_{x}, P_{y}\right)$
If $|P| \leq 3$ then
find closest pair by measuring all pairwise distances
Endif
Construct $Q_{x}, Q_{y}, R_{x}, R_{y}(O(n)$ time)
$\left(q_{0}^{*}, q_{1}^{*}\right)=$ Closest-Pair-Rec $\left(Q_{x}, Q_{y}\right)$
$\left(r_{0}^{*}, r_{1}^{*}\right)=$ Closest-Pair-Rec $\left(R_{r}, R_{v}\right)$
$\delta=\min \left(d\left(q_{0}^{*}, q_{1}^{*}\right), d\left(r_{0}^{*}, r_{1}^{*}\right)\right)$
$x^{*}=$ maximum x-coordinate of a point in set Q
$L=\left\{(x, y): x=x^{*}\right\}$
$S=$ points in P within distance δ of L.

Construct S_{y} ($O(n)$ time)
For each point $s \in S_{y}$, compute distance from s
to each of next 15 points in S_{y}
Let s, s^{\prime} be pair achieving minimum of these distances ($O(n)$ time)

If $d\left(s, s^{\prime}\right)<\delta$ then
Return (s, s^{\prime})
Else if $d\left(q_{0}^{*}, q_{1}^{*}\right)<d\left(r_{0}^{*}, r_{1}^{*}\right)$ then Return $\left(q_{0}^{*}, q_{1}^{*}\right)$
Else
Return (r_{0}^{*}, r_{1}^{*})
Endif

Closest Pair: Final Algorithm

Closest-Pair (P)
Construct P_{x} and $P_{y} \quad\left(O\left(\begin{array}{ll}n & \log n) \text { time })\end{array}\right.\right.$
$\left(p_{0}^{*}, p_{1}^{*}\right)=$ Closest-Pair-Rec $\left(P_{x}, P_{y}\right)$

Closest-Pair-Rec $\left(P_{x}, P_{y}\right)$
If $|P| \leq 3$ then
find closest pair by measuring all pairwise distances Endif

Construct $Q_{x}, Q_{y}, R_{x}, R_{y}(O(n)$ time)
$\left(q_{0}^{*}, q_{1}^{*}\right)=$ Closest-Pair-Rec $\left(Q_{x}, Q_{y}\right)$
$\left(r_{0}^{*}, r_{1}^{*}\right)=$ Closest-Pair-Rec $\left(R_{x}, R_{y}\right)$
$\delta=\min \left(d\left(q_{0}^{*}, q_{1}^{*}\right), \quad d\left(r_{0}^{*}, r_{1}^{*}\right)\right)$
$x^{*}=$ maximum x-coordinate of a point in set Q
$L=\left\{(x, y): x=x^{*}\right\}$

Closest Pair: Final Algorithm

Closest-Pair-Rec $\left(P_{x}, P_{y}\right)$
If $|P| \leq 3$ then
find closest pair by measuring all pairwise distances Endif

Construct $Q_{x}, Q_{y}, R_{x}, R_{y}(O(n)$ time)
$\left(q_{0}^{*}, q_{1}^{*}\right)=$ Closest-Pair-Rec $\left(Q_{x}, Q_{y}\right)$
$\left(r_{0}^{*}, r_{1}^{*}\right)=$ Closest-Pair-Rec $\left(R_{x}, R_{y}\right)$
$\delta=\min \left(d\left(q_{0}^{*}, q_{1}^{*}\right), \quad d\left(r_{0}^{*}, r_{1}^{*}\right)\right)$
$x^{*}=$ maximum x-coordinate of a point in set Q
$L=\left\{(x, y): x=x^{*}\right\}$
$S=$ points in P within distance δ of L.

Construct S_{y} ($O(n)$ time)
For each point $s \in S_{y}$, compute distance from s

Closest Pair: Final Algorithm

$\delta=\min \left(d\left(q_{0}^{*}, q_{1}^{*}\right), d\left(r_{0}^{*}, r_{1}^{*}\right)\right)$
$x^{*}=$ maximum x-coordinate of a point in set Q
$L=\left\{(x, y): x=x^{*}\right\}$
$S=$ points in P within distance δ of L.

Construct S_{y} ($O(n)$ time)
For each point $s \in S_{y}$, compute distance from s
to each of next 15 points in S_{y}
Let s, s^{\prime} be pair achieving minimum of these distances
($O(n)$ time)

If $d\left(s, s^{\prime}\right)<\delta$ then
Return (s, s^{\prime})
Else if $d\left(q_{0}^{*}, q_{1}^{*}\right)<d\left(r_{0}^{*}, r_{1}^{*}\right)$ then
Return $\left(q_{0}^{*}, q_{1}^{*}\right)$
Else
Return $\left(r_{0}^{*}, r_{1}^{*}\right)$
Endif

Integer Multiplication

Multiply Integers
INSTANCE: Two n-digit binary integers x and y SOLUTION: The product $x y$

Integer Multiplication

Multiply Integers
INSTANCE: Two n-digit binary integers x and y SOLUTION: The product $x y$

- Multiply two n-digit integers.

Integer Multiplication

Multiply Integers
INSTANCE: Two n-digit binary integers x and y SOLUTION: The product $x y$

- Multiply two n-digit integers.
- Result has at most $2 n$ digits.

Integer Multiplication

Multiply Integers
INSTANCE: Two n-digit binary integers x and y SOLUTION: The product xy

- Multiply two n-digit integers.
- Result has at most $2 n$ digits.
- Algorithm we learnt in school takes

	1100
	$\times 1101$
12	0000
$\times 13$	
36	1100
$\frac{12}{156}$	$\frac{1100}{10011100}$
(a)	(b)

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal and (b) binary representation.

Integer Multiplication

Multiply Integers
INSTANCE: Two n-digit binary integers x and y SOLUTION: The product $x y$

- Multiply two n-digit integers.
- Result has at most $2 n$ digits.
- Algorithm we learnt in school takes $O\left(n^{2}\right)$ operations. Size of the input is not 2 but $2 n$,

	1100 $\times 1101$ 12
1100	
$\times 13$	
36	0000
$\frac{12}{156}$	$\frac{1100}{10011100}$

(a)
(b)

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal and (b) binary representation.

Divide-and-Conquer Algorithm

- Assume integers are binary.
- Let us use divide and conquer

Divide-and-Conquer Algorithm

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first $n / 2$ bits and last $n / 2$ bits.
- Let x be split into x_{0} (lower-order bits) and x_{1} (higher-order bits) and y into y_{0} (lower-order bits) and y_{1} (higher-order bits).

$$
x y=
$$

Divide-and-Conquer Algorithm

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first $n / 2$ bits and last $n / 2$ bits.
- Let x be split into x_{0} (lower-order bits) and x_{1} (higher-order bits) and y into y_{0} (lower-order bits) and y_{1} (higher-order bits).

$$
\begin{aligned}
x y & =\left(x_{1} 2^{n / 2}+x_{0}\right)\left(y_{1} 2^{n / 2}+y_{0}\right) \\
& =x_{1} y_{1} 2^{n}+\left(x_{1} y_{0}+x_{0} y_{1}\right) 2^{n / 2}+x_{0} y_{0}
\end{aligned}
$$

Divide-and-Conquer Algorithm

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first $n / 2$ bits and last $n / 2$ bits.
- Let x be split into x_{0} (lower-order bits) and x_{1} (higher-order bits) and y into y_{0} (lower-order bits) and y_{1} (higher-order bits).

$$
\begin{aligned}
x y & =\left(x_{1} 2^{n / 2}+x_{0}\right)\left(y_{1} 2^{n / 2}+y_{0}\right) \\
& =x_{1} y_{1} 2^{n}+\left(x_{1} y_{0}+x_{0} y_{1}\right) 2^{n / 2}+x_{0} y_{0}
\end{aligned}
$$

- Each of $x_{1}, x_{0}, y_{1}, y_{0}$ has $n / 2$ bits, so we can compute $x_{1} y_{1}, x_{1} y_{0}$, $x_{0} y_{1}$, and $x_{0} y_{0}$ recursively, and merge the answers in $O(n)$ time.

Divide-and-Conquer Algorithm

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first $n / 2$ bits and last $n / 2$ bits.
- Let x be split into x_{0} (lower-order bits) and x_{1} (higher-order bits) and y into y_{0} (lower-order bits) and y_{1} (higher-order bits).

$$
\begin{aligned}
x y & =\left(x_{1} 2^{n / 2}+x_{0}\right)\left(y_{1} 2^{n / 2}+y_{0}\right) \\
& =x_{1} y_{1} 2^{n}+\left(x_{1} y_{0}+x_{0} y_{1}\right) 2^{n / 2}+x_{0} y_{0}
\end{aligned}
$$

- Each of $x_{1}, x_{0}, y_{1}, y_{0}$ has $n / 2$ bits, so we can compute $x_{1} y_{1}, x_{1} y_{0}$, $x_{0} y_{1}$, and $x_{0} y_{0}$ recursively, and merge the answers in $O(n)$ time.
- What is the running time $T(n)$?

Divide-and-Conquer Algorithm

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first $n / 2$ bits and last $n / 2$ bits.
- Let x be split into x_{0} (lower-order bits) and x_{1} (higher-order bits) and y into y_{0} (lower-order bits) and y_{1} (higher-order bits).

$$
\begin{aligned}
x y & =\left(x_{1} 2^{n / 2}+x_{0}\right)\left(y_{1} 2^{n / 2}+y_{0}\right) \\
& =x_{1} y_{1} 2^{n}+\left(x_{1} y_{0}+x_{0} y_{1}\right) 2^{n / 2}+x_{0} y_{0}
\end{aligned}
$$

- Each of $x_{1}, x_{0}, y_{1}, y_{0}$ has $n / 2$ bits, so we can compute $x_{1} y_{1}, x_{1} y_{0}$, $x_{0} y_{1}$, and $x_{0} y_{0}$ recursively, and merge the answers in $O(n)$ time.
- What is the running time $T(n)$?

$$
T(n) \leq 4 T(n / 2)+c n
$$

Divide-and-Conquer Algorithm

- Assume integers are binary.
- Let us use divide and conquer by splitting each number into first $n / 2$ bits and last $n / 2$ bits.
- Let x be split into x_{0} (lower-order bits) and x_{1} (higher-order bits) and y into y_{0} (lower-order bits) and y_{1} (higher-order bits).

$$
\begin{aligned}
x y & =\left(x_{1} 2^{n / 2}+x_{0}\right)\left(y_{1} 2^{n / 2}+y_{0}\right) \\
& =x_{1} y_{1} 2^{n}+\left(x_{1} y_{0}+x_{0} y_{1}\right) 2^{n / 2}+x_{0} y_{0}
\end{aligned}
$$

- Each of $x_{1}, x_{0}, y_{1}, y_{0}$ has $n / 2$ bits, so we can compute $x_{1} y_{1}, x_{1} y_{0}$, $x_{0} y_{1}$, and $x_{0} y_{0}$ recursively, and merge the answers in $O(n)$ time.
- What is the running time $T(n)$?

$$
\begin{aligned}
T(n) & \leq 4 T(n / 2)+c n \\
& \leq O\left(n^{2}\right)
\end{aligned}
$$

Improving the Algorithm

- Four sub-problems lead to an $O\left(n^{2}\right)$ algorithm.
- How can we reduce the number of sub-problems?

Improving the Algorithm

- Four sub-problems lead to an $O\left(n^{2}\right)$ algorithm.
- How can we reduce the number of sub-problems?
- We do not need to compute $x_{1} y_{0}$ and $x_{0} y_{1}$ independently; we just need their sum.

Improving the Algorithm

- Four sub-problems lead to an $O\left(n^{2}\right)$ algorithm.
- How can we reduce the number of sub-problems?
- We do not need to compute $x_{1} y_{0}$ and $x_{0} y_{1}$ independently; we just need their sum.
- $x_{1} y_{1}+\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}=\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right)$
- Compute $x_{1} y_{1}, x_{0} y_{0}$ and $\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right)$ recursively and then compute ($x_{1} y_{0}+x_{0} y_{1}$) by subtraction.
- We have three sub-problems of size $n / 2$.
- What is the running time $T(n)$?

Improving the Algorithm

- Four sub-problems lead to an $O\left(n^{2}\right)$ algorithm.
- How can we reduce the number of sub-problems?
- We do not need to compute $x_{1} y_{0}$ and $x_{0} y_{1}$ independently; we just need their sum.
- $x_{1} y_{1}+\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}=\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right)$
- Compute $x_{1} y_{1}, x_{0} y_{0}$ and $\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right)$ recursively and then compute ($x_{1} y_{0}+x_{0} y_{1}$) by subtraction.
- We have three sub-problems of size $n / 2$.
- What is the running time $T(n)$?

$$
T(n) \leq 3 T(n / 2)+c n
$$

Improving the Algorithm

- Four sub-problems lead to an $O\left(n^{2}\right)$ algorithm.
- How can we reduce the number of sub-problems?
- We do not need to compute $x_{1} y_{0}$ and $x_{0} y_{1}$ independently; we just need their sum.
- $x_{1} y_{1}+\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}=\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right)$
- Compute $x_{1} y_{1}, x_{0} y_{0}$ and $\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right)$ recursively and then compute $\left(x_{1} y_{0}+x_{0} y_{1}\right)$ by subtraction.
- We have three sub-problems of size $n / 2$.
- What is the running time $T(n)$?

$$
\begin{aligned}
T(n) & \leq 3 T(n / 2)+c n \\
& \leq O\left(n^{\log _{2} 3}\right)=O\left(n^{1.59}\right)
\end{aligned}
$$

Final Algorithm

```
Recursive-Multiply(x,y):
    Write \(x=x_{1} \cdot 2^{n / 2}+x_{0}\)
        \(y=y_{1} \cdot 2^{n / 2}+y_{0}\)
    Compute \(x_{1}+x_{0}\) and \(y_{1}+y_{0}\)
    \(p=\) Recursive-Multiply \(\left(x_{1}+x_{0}, \quad y_{1}+y_{0}\right)\)
    \(x_{1} y_{1}=\) Recursive-Multiply \(\left(x_{1}, y_{1}\right)\)
    \(x_{0} y_{0}=\operatorname{Recursive-Multiply}\left(x_{0}, y_{0}\right)\)
    Return \(x_{1} y_{1} \cdot 2^{n}+\left(p-x_{1} y_{1}-x_{0} y_{0}\right) \cdot 2^{n / 2}+x_{0} y_{0}\)
```

