
CS 3214 Spring 2014 Midterm

1/8

CS 3214 Midterm

Here is the distribution of midterm scores for both sections (combined).

The overall average was 58 points.

Problem Points Score

I Processes and Threads 35

II Input/Output 35

III Synchronization 30

 Total 100

0

2

4

6

8

10

12

14

16

18

20

1009590858075706560555045403530252015

Midterm Scores

CS 3214 Spring 2014 Midterm

2/8

I. Processes (34 points)

A simple state model of processes has the three states of Running, Ready, and Blocked.

(a) (5 points) Draw a diagram showing the transitions that can occur between these states. Be

sure to account for all transitions.

(b) (12 points) In each scenario given in the table indicate which one(s) of the three state

names (Running, Ready, or Blocked) in each column. If there is no state that applies
answer “None”. If more than one state is possible list all that are possible.

Scenario Before After
A process performs a mode switch. What is the
state of the process immediately before and
immediately after the mode switch?

running running

A context switch is performed because process
P reached the end of the time period (time
slice) allocated to it by the scheduler. What is
the state of the process immediately before and
immediately after the context switch?

running ready

A process performs a fork() operation. What is
the state of the parent process immediately
before the fork() call and what is the state of
the child process immediately after the fork()
call?

running ready or
running

A process performs an exit() system call. What
is the state of the process immediately before
and immediately after the exit() call?

running none

Running

Blocked Ready

CS 3214 Spring 2014 Midterm

3/8

Scenario Before After
A process performs a read() on a pipe that
contains no data. What is the state of the
process immediately before and immediately
after the read() call?

running blocked

A process has done a wait() system call and
later a SIGCHLD signal arrives for which the
process has a defined signal handler. What is
the state of the process immediately before the
delivery of the signal and immediately after the
signal handler is entered?

blocked running

A process performs an exec() system call.
What is the state of the process immediately
before and immediately after the exec() call?

running running or
ready

A process previously received a SIGSTP
signal. That process now receives a SIGCONT
signal. What is the state of the process
immediately before and immediately after the
SIGCONT signal is received?

blocked ready or
running

(c) (18 points) If a process has created two threads and then performs a fork() system call

does the child process also have two threads? Answer this question by writing the C code
whose output unambiguously answers this question.

pthread_t tid;
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

int result;

void* test_thread(void* arg) {
 pthread_mutex_lock(&lock);
 printf("thread in process %d \n", getpid());
 pthread_mutex_unlock(&lock);
}

int main() {
 pthread_mutex_lock(&lock);
 pthread_create(&tid, NULL, test_thread, (void*)0);
 if (fork() == 0) {
 pthread_mutex_unlock(&lock);
 pthread_join(tid, (void*)&result);
 exit(0);
 }
 wait(&result);
 pthread_mutex_unlock(&lock);
 pthread_join(tid, (void*)&result);
}

CS 3214 Spring 2014 Midterm

4/8

II. I/O (35 points)

(a) A file descriptor is an abstract identifier for a source/destination for I/O.

1. (6 points) Identify three different types of sources/destinations which can be referred to

by a file descriptor.

 files
 pipes
 terminal (or devices in general)
 kernel information
 network connections

2. (6 points) Name two concrete advantages for an application developer because a file

descriptor is an abstract identifier.

- write programs whose I/O is independent of the actual
source/destinations

- the file descriptors can be rearranged allowing child processes to be
“rewired” for a different I/O configuration than their parents.

(b) (8 points) Shown in the left column is code that creates and manipulates file descriptors.

For each read/write operation shown in the middle column indicate in the right column
the data stream affected by the operation. If the read/write operation is erroneous, write
ERROR. Assume that all standard streams are open, that file descriptors are assigned in
sequential order, and that no other file descriptors are used except those shown.

code read/write
operation

affected stream

int f1, f2, fd[2];

pipe[fd];
f1 =open(“file1”,O_RDWR);
f2 =creat(“file2”,S_IRWXU);

dup2(3,0);
dup2(5,3);
close(5);

 read(0,…)

pipe

 write(0,…)

error

 write(1,…)

stdout

 write(2,…)

stderr

 read(3,…) file1

CS 3214 Spring 2014 Midterm

5/8

 write(3,…)

file1

 write(4,…)

pipe

 write(5,…)

error

 read(6,…)

file2

 write(6,…)

file2

(c) (15 points) For a certain shell the command A || B means that the standard output of A

should be connected to the standard input of B and the standard input of A should be
connected to the standard output of B. Write the C code of a parent process that would
create the above configuration.

pipe1[2];
pipe2[2];
pipe(pipe1); // create two pipes
pipe(pipe2);

if(fork() == 0) { // launch child A
 dup2(pipe1[1], STDOUT);
 dup2(pipe2[0], STDIN);
 close(pipe1[0]);
 close(pipe2[1]);
 exec(A);
}
if(fork() == 0) { // launch child B
 dup2(pipe1[0], STDIN);
 dup2(pipe2[1], STDOUT);
 close(pipe1[1]);
 close(pipe2[0]);
 exec(B);
}

close(pipe1[0]); // parent closes all pipe ends
close(pipe1[1]);
close(pipe2[0]);
close(pipe2[1]);

CS 3214 Spring 2014 Midterm

6/8

III. Synchronization (30 points)

A multi-threaded application defines a global accessible structure as follows:

struct {
 int size;
 app_data_t A[100];
} app_data;

This data is shared by several threads each of which adds data to the array. The threads use
the functions size(app_data ad) to find the current number of elements in the array
and add(app_data ad, app_data_t data) to add data into the array. The size
and add functions internally insure mutual exclusive access to the shared data. The thread
code looks like this:

 /* body of function executed by each thread */
 app_data_t data;
 while (size(app_data) < 100) {
 produce(&data);
 add(app_data, data)
 }
 pthread_exit();

(a) (5) The thread code has an atomicity violation. Explain how this violation can occur.

A scenario illustrating the atomicity violation is as follows:

1. the thread tests the condition in the while loop and find it true
2. before the thread can read the add() function some other thread(s) fill

up the array
3. the original thread then calls add() overflowing the array

CS 3214 Spring 2014 Midterm

7/8

(b) (10 points) Show all code, including initializations, that you would need to solve the
atomicity violation.

global declaration:
pthread_mutex_t mutex = PTHREAD_MUTEX_INTIALIZER;
bool done = false;

while(!done) {
 produce(&data);
 pthread_mutex_lock(mutex);
 if (size(app_data) < 100)
 add(app_data, data);
 else done = true;
 pthread_mutex_unlock(mutex);
}
pthread_exit();

Note: an answer with semaphores is also acceptable

(c) (15 points) Multiple clients synchronize their use of a shared resource using three
synchronizations functions according to this pattern:

 ...
 int t = get_ticket();
 ...
 use_ticket(t);
 // use resource
 done_ticket();

where the three synchronizing functions are implemented as follows:

int get_ticket() {
 pthread_mutex_lock(&mutex);
 int my_ticket = ticket;
 ticket++;
 pthread_mutex_unlock(&mutex)
 return my_ticket;
}

void use_ticket(int my_ticket) {
 pthread_mutex_lock(&mutex);
 while(currrent != my_ticket)
 pthread_cond_wait(&turn, &mutex);
 pthread_mutex_unlock(&mutex)
}

CS 3214 Spring 2014 Midterm

8/8

void done_ticket() {
 pthread_mutex_lock(&mutex);
 current++;
 pthread_cond_broadcast(&turn);
 pthread_mutex_unlock(&mutex);
}

1. (5 points) Is the use of the resource mutual exclusive?

 Yes. Because the use_ticket function delays all threads from proceeding
except the single thread whose ticket number matches the current ticket.

2. (5 points) Is there an order by which the clients use the resource? If so, what is the order?

Yes. The clients use the resource in the order of the ticket numbers that
they received in get_ticket.

3. (5 points) Why does the done_ticket function use a broadcast operation?

Because there is no guarantee that a signal will awaken the thread with the
lowest ticket number. Therefore, all threads have to be awakened so that
they can (re)test whether their ticket number corresponds to the current
ticket.

	I. Processes (34 points)
	II. I/O (35 points)
	III. Synchronization (30 points)

