
CS 3214 Spring 2014 Final Exam

1/11

CS 3214 Final Exam

This is a closed-book, closed-internet, closed-cell phone and closed-computer exam.
However, you may refer to your prepared notes on 1 double-sided page. Your exam
should have 11 pages with 4 topics totaling 150 points. You have 120 minutes.
Please write your answers in the space provided on the exam paper. If you unstaple your
exam, please put your initials on all pages. You may use the back of pages if necessary,
but please indicate if you do so. Answers will be graded on correctness and clarity. You will
lose points if your solution is more complicated than necessary or if you provide
extraneous, but incorrect information along with a correct solution.

To be considerate to your fellow students, if you leave early, do so with the least amount of
noise.

Name (printed) ___

I accept the letter and the spirit of the Virginia Tech undergraduate honor code – I have not
given or received aid on this exam.

(signed) ___

Problem Points Score

1 Concurrency and Synchronization 25

2 Memory 45

3 Communication and Networking 60

4
Essay Question
 technical content
 writing

 14
 6

 Total 150

CS 3214 Spring 2014 Final Exam

2/11

1. Concurrency and Synchronization (25 points)
c) (25 points) Threads in a given application exert different loads on the

system’s database. The load that a given thread exerts on the database is
measured by a simple positive integer value. If the total load exerted by all
threads on the database exceeds MAX_LOAD the overall system
performance declines precipitously.

The threads must be synchronized so that the total load on the database is never
more than MAX_LOAD. Complete the two procedures shown below with the code
needed to achieve the correct synchronization. Assume that each thread uses
start_DB before using the database and end_DB afterwards.

Declare any global variables needed. Be sure to show all initializations.

void start_DB(int load);
void end_DB (int load);

answer

int current_load = 0;
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t load_low = PTHREAD_COND_INITIALIZER;

void start_DB(int load) {
 pthread_mutex_lock(lock);
 while (load + current_load > MAX_LOAD)
 pthread_cond_wait(load_low, lock);
 current_ load = current_load + load;
 pthread_mutex_unlock(lock)
}

void end_DB(int load){
 pthread_mutex_lock(lock);
 current_load = current_load- load;
 pthread_cond_broadcast(load_low);
 pthread_mutex_unlock(lock);
}

CS 3214 Spring 2014 Final Exam

3/11

2. Memory (45 points)

a) (10 points) One of the code samples below has a memory management issue and

one has an optimization blocker. Identify which code example has which problem
and specifically describe how the problem occurs. You do not have to fix the
problem.

(1) struct mags {
 int sum;
 int prod;
 }

 struct mags* find(int x, int y) {
 struct mags m;
 m.sum = x + y;
 m.prod = x*y;
 return &m;
 }
(2) void find(int x, int y, int* sum, int* prod) {
 *sum = x + y;
 *prod = (*sum) * (*sum);
 }
(3) int find(int x, int y) {
 int m = 0;
 for(i=0; i< x; i++)
 for(j=0; j< y; j++)
 m = m + j*bigger(x,y); // bigger returns the
 // larger of x and y
 return m;
 }

answer:

(1) has a memory management problem because it returns a pointer to a variable
allocated in the current stack frame which is de-allocated when the procedure returns

(3) has an optimization blocker because the compiler cannot know that bigger can be
moved out of the inner loop

CS 3214 Spring 2014 Final Exam

4/11

b) (12 points) Examine each of for the four code examples shown below. Each
example involves the code in two files named one.c and two.c. In each case state
whether the code will or will not compile. In those cases where the code does
compile state what, if any, concerns there is about the correctness of the code's
execution. You do NOT have to fix the problems. Use the back of the page for
additional space if needed.

Example one.c two.c

1

int x;
void one(int y) {
 double a;
 …
}

int x = 0;
void two(double z) {
 float y;
 …
}

2

int x;
void one(int y) {
 double a;
 …
}

extern int x;
void two(double z) {
 float y;
 …
}

3

int x=0;
void one(int y) {
 double a;
 …
}

double x = 0;
void two(double z) {
 float y;
 …
}

4

int x;
void one(int y) {
 double a;
 …
}

double x = 0;
void two(double z) {
 float y;
 …
}

answers:

(1) will compile but may not be what is intended
(2) will compile and execute
(3) will not compile because of conflict between two strong global symbols
(4) will compile but is almost certainly wrong because of mismatched type for
symbol x

CS 3214 Spring 2014 Final Exam

5/11

c) (9 points) Examine each of for the three code examples shown below. In each case

state whether the code is or is not thread safe and why the code is or is not thread
safe.

Example Code

1

int safe(int x) {
 int y;
 y = x *2 + x;
 return y;
}

2

int* safe(int x) {
 int y*;
 y = malloc(sizeof(int));
 y* = x *2 + x;
 return y;
}

3

int y;

void safe(int x) {
 y = x *2 + x;
}

answer:

(1) thread safe – data allocated on stack specific to each thread
(2) thread safe – data allocated in memory for each thread
(3) NOT thread safe because of global variable that is unprotected by
synchronization

CS 3214 Spring 2014 Final Exam

6/11

d) Indicate the role that virtual memory plays in each of these situations. If the

virtual memory plays no role write NONE.

i. (4 points) What the system does in response to the fork() system call.

answer: create a duplicate page table mapping in child; use copy-on write to
avoid creating new physical pages

ii. (3 points) Preventing code stored on the stack from executing, thus preventing
some forms of buffer overflow attacks.

answer: each page table entry contains access control bits; turn off the execute
bit in entries that map to pages containing the stack

iii. (3 points) Improving the locality of programs

answer: NONE

iv. (4 points) Supporting dynamic shared libraries.

answer: create different mappings of virtual to physical memory in each of the
processes sharing the library code

CS 3214 Spring 2014 Final Exam

7/11

3. Communication/Networking (60 points)

a) (10 points) Identify three similarities and three differences between pipes and

sockets.

answer:

Similarities: both are accessed via file descriptors
 both are reliable
 both are ordered
 both have short-read issues

Difference: pipes are not across machines while sockets are
 pipes are unidirectional while sockets are bidirectional
 a pipe has two file descriptors while a socket has only one
 a socket has an address attached to it while a pipe does not.

note: other reasonable similarities/differences accepted

b) You are asked to implement a server which, for each accepted connection from a

client, launches a child process to execute the code in the executable file "serve-
client". The child process is configured so that data sent by the client is received on
the standard input of the child and the data produced by the child process on its
standard output is sent to the client. A utility function, socket_setup, creates a
protocol-independent socket on which incoming client requests can be accepted and
returns the file descriptor for that socket.

i. (5 points) The socket_setup function uses four socket-related system calls.

Name and briefly describe each one. You do NOT need to show detailed code.

answer:

 - socket (creates socket and identifies general protocol characteristics)
 - get_addrinfo (returns the Internet address for this socket)
 - bind (attaches the Internet address to the socket)
 - listen (specifies the queue length for incoming requests and allows

incoming requests to be accepted)

CS 3214 Spring 2014 Final Exam

8/11

ii. (15 points) Use the socket_setup function to write the code for the server that
accepts incoming client connections and launches the child process as described
above. You do not need to worry about error conditions in this code.

answer:

 int sockfd = socket_setup();
 while (true) { // condition does not matter
 int clientfd = accept(sockfd, NULL, NULL); // NULL parameters OK
 if(fork() == 0) { /* child /*
 dup2(clientfd, 0);
 dup2(clientfd, 1);
 close(clientfd); // child closes original file descriptor after dups
 execlp("serve-client", "serve-client", (char*)0)
 }
 close(clientid); // parent also closes the file descriptor
 }

CS 3214 Spring 2014 Final Exam

9/11

c) HTTP allows a "non-persistent connection". Similarly, the TCP/IP protocols provide
through UDP a "connectionless-oriented" service. These two seem well matched.

i. (3 points) Explain what is meant by a non-persistent connection.

answer: a connection that is closed after the current request has been satisfied

ii. (3 points) Explain what is meant by a connectionless-oriented service.

answer: one where each packet is delivered independently of any other packet
between the same sender and receiver.

iii. (4 points) If you are implementing a non-persistent connection would you use
UDP as the underlying protocol? Explain why or why not.

answer: No, because reliable ordered information is needed to send the
response properly to the client.

CS 3214 Spring 2014 Final Exam

10/11

d) (20 points) You are asked to serve on a standards committee to draft a new version

of the HTTP protocol for periodic data streams. Examples meant to be covered by
the protocol include stock quotes, news feeds, weather updates, etc. The model for
periodic data streams is that, once a stream is opened by a client, the client will
receive data periodically until the client sends a request to close the stream. The
names of the periodic data streams available on a given server are denoted by the
names of files in the root directory stream. For each periodic data stream the client
selects a port number that it will use to receive the data sent by the server. A client
may have several streams open at one time to the same server. The client should be
able to specify what protocol is used to send the stream data.

Show and briefly describe an example illustrating at least FIVE extensions that you
would make to the HTTP protocol.

answer:

add new version number to the first line of a request, example HTTP/1.2
add definition for data streams (e.g., /stream/newsfeed)
add two new verbs for OPEN and CLOSE
add new header line to specify client port
add new header line to specify protocol

example:

OPEN /stream/newsfeed HTTP/1.2
Receive-port: 8010
Protocol: UDP

CLOSE /stream/newsfeed HTTP/1.2
Receive-port: 8010

CS 3214 Spring 2014 Final Exam

11/11

4. Essay Question (20 points)

Recall the LRU memory management algorithm that is typically used with virtual
memory management, where the least recently used page is evicted to make room for a
page this is being brought in as part of the page-fault servicing. The theoretical LRU
algorithm works by moving a page that experiences a hit to the head of a list, and when
needed select a page on the tail of the list for eviction. Identify a key challenge in
implementing the LRU algorithm in actual virtual memory management. Discuss the
design of a practical system that implements the LRU for virtual memory management.

Note: This question will be graded both for technical content of your arguments (14 points)
and for your ability to communicate effectively in writing (6 points). Your answer should be
well-written, organized, and clear. Your answer must be legible – points will be
deducted for parts that cannot be read with normal effort. Use the back of this page
as needed.

The writing should focus on details specific to LRU, to the LRU implementation (not the
LRU algorithm), and concern system-level factors (not simply data structure concerns
when these are not directly tied to system factors).

Technical content:
 Identify inability to know about page hits in a VM-based system, i.e., while a
page fault is routed to the kernel for processing, the kernel is not informed on a page hit.
This renders the ability to maintain a recency-ordered list of pages impossible.(4)
 Describe a clock-based or similar system to implement the LRU. Identify that
hardware support is needed to identify pages that have been accessed between page
faults and that special clock-based data structures are required to approximate least
recently accessed pages. (6)
 Describe the complete design with dirty page management (2-bit clock). (4)

Writing:
 Clear and complete sentences (2)
 Logically composed sentences (4)

 Technical Content: __________ Writing: __________

	1. Concurrency and Synchronization (25 points)
	2. Memory (45 points)
	3. Communication/Networking (60 points)
	4. Essay Question (20 points)

