RAID – Redundant Arrays of Inexpensive Disks

- Idea born around 1988
- Original observation: it’s cheaper to buy multiple, small disks than a single large expensive disk (SLED)
 - SLEDs don’t exist anymore, but multiple disks arranged as a single disk still useful
- Can reduce latency by writing/reading in parallel
- Can increase reliability by exploiting redundancy
- Several arrangements are known, 7 have “standard numbers”
- Can be implemented in hardware/software
- RAID array would appear as single physical volume to LVM

RAID 0

- RAID: Striping data across disk
- Advantage: If disk access go to different disk, can read/write in parallel, decrease in latency
- Disadvantage: Decreased reliability
 - MTTF(Array) = MTTF(Disk)/#disks

Using XOR for Parity

X Y Z W

X^X = 0
X^1 = 1X
X^0 = X
X^W = X^Y^Z
Y^W = Y^X^Z
Z = X^Y^W

W = X^Y^Z

Let’s set: W = X^Y^Z

0 0 0 0
1 0 1 0

Obtain: X^Y^W (analogously for X, Y)
RAID 4
- **RAID 4:** Striping + Block-level parity
- Advantage: need only N+1 disks for N-disk capacity & 1 disk redundancy
- Disadvantage: small writes (less than one stripe) may require 2 reads & 2 writes
 - Read old data, read old parity, write new data, compute & write new parity
 - Parity disk can become bottleneck

RAID 5
- **RAID 5:** Striping + Block-level Distributed Parity
- Like RAID 4, but avoids parity disk bottleneck
- Get small read latency advantage
- Best large read & large write performance
- Only remaining disadvantage is small writes

Security & Protection
- **Security Requirements & Threats**
 - Requirement
 - Confidentiality
 - Integrity
 - Availability
 - Authenticity
 - Threat
 - Interception
 - Modification
 - Interruption
 - Fabrication

 The goal of a protection system is to ensure these requirements and protect against accidental or intentional misuse

Policy vs Mechanism
- First step in addressing security: separate the what should be done from the how it should be done part
- A protection system is the mechanism that enforces the security policy
- The security policy specifies what is allowed and what is not

Protection: AAA
- Core components of any protection mechanism
- Authentication
 - Verify that we really know who we are talking to
- Authorization
 - Check that user X is allowed to do Y
- Access enforcement
 - Ensure that authorization decision is respected
 - Hard: every system has holes
- Social vs technical enforcement
Authentication Methods

- **Passwords**
 - Weakest form, and most common
 - Subject to dictionary attacks
 - Passwords should not be stored in clear text, instead, use one-way hash function
- **Badge or Keycard**
 - Should not be (easily) forgeable
 - Problem: how to invalidate?
- **Biometrics**
 - Problem: ensure trusted path to device

Authorization

- Once user has been authenticated, need some kind of database to keep track of how they are allowed to do
- **Simple model:**
 - **Access Matrix**
 - | Principals (e.g. users) | Objects (e.g. files, resources) |
 - | User A | Can Read | File 1 |
 - | User B | Can R/W | TTY 2 |

Representing Access Matrices

- Problem: access matrices can be huge
 - How to deal with them in a condensed way?
- Two choices:
 - By row: Capabilities
 - What is principal X allowed to do?
 - By column: Access Control Lists
 - Who has access to resource Y?

Access Control Lists

- General: store list of <user, set of privileges> for each object
- Example: files, for each file store who is allowed to access it (and how)
- Most filesystems support it.
- Groups can be used to compress the information:
 - Old-style Unix permissions rwxr-xr-x
- Q.: where in the filesystem would you store ACLs/permissions?

Capabilities

- General: store (capability) list of <object, set of privileges> for each user
- Typically used in systems that must be very secure
 - Default is empty capability list
- Capabilities also often function as names
 - Can access it if you know the name
 - Must make names unforgeable, or must have system monitors who holds what capabilities

Trusted Computing Base

- The part of the system that enforces access control decisions
 - Also protects authentication information
- Issues:
 - Bug in TCB, security is compromised
 - Need to keep it small and manageable
 - Usually: entire kernel is part of TCB (huge!)
 - Weakest link phenomenon