High-level Objectives

- Learn how an OS works
 - OS are essential to everything we do with computers
- Get an inside view
 - Look at design & implementation
- Learn by doing
 - You'll code a substantial part of an actual OS

About Me

- Undergraduate Work at Humboldt and Technical University Berlin
- PhD University of Utah
- Postdoctoral Work at Stanford University
- 3rd Year at Virginia Tech as Assistant Professor (joined August 2004)
- Research Interests:
 - Operating systems, runtime systems and compilers: focus on building reliable systems.

Course Facts

- Meet Tuesday & Thursday 11:00am-12:15pm MCB 216
- Check website regularly
 - http://courses.cs.vt.edu/~cs3204/fall2006/gback
- Send class-related email to
 - cs3204-staff@cs.vt.edu
- Use CS Forum for projects
- TA: Shuaiwen Song (“Leon”) for this section

Email Etiquette

- Please enter your name in webmail so it appears in From: line
- Be coherent when you email

Reading Material

- Required Textbook
- Will post reading assignments:
 - Chapter 1 & 2 for this week
Class Format

• Lectures
• Exams
 – 1 Midterm
 – 1 Final (Comprehensive)
 You must take both exams to pass the class.
• Programming Projects

Prerequisites

• Willingness to master an intellectually challenging subject
• Knowledge of computer organization (ECE 2504)
 – Addresses, Registers, Basic Assembly Language, Memory Organization
• Knowledge of algorithms & data structures (CS 2604)
 – Solid knowledge of linked lists, hash tables, etc.
• Solid knowledge of C

Talking about C…

```c
#define offsetof(TYPE, MEMBER) 
  ((size_t) &((TYPE *) 0)->MEMBER)

struct point {
  int x;
  int y;
  int z;
  char c;
  float o;
};

Q.: What is offsetof(struct point, y)?
  offsetof(struct point, o)?
```

Programming Projects

• 5 Projects: 0, 1, 2, 3, and 4.
• Project 0 is warm-up
• Projects 1-4 will use the Pintos operating system developed at Stanford.
• Project dependency graph
• Projects are different in five ways

Project Difference #1

• The Pintos projects are hard
• Expect a challenge
• About 2,500 lines of code (over the entire semester) to write
• We will help:
 – Provide tools, answer questions
 – Although Pintos is a true OS, we run it in a simulator (Bochs) → reproducibility! (well, almost…)
• Ask lots of questions!

Project Difference #2

• The projects are group projects
• Working in a group more closely resembles what you do outside of academia
 – Can design together, code together
 – Learn group collaboration tools (CVS version control system)
• Group members must contribute equally
Project Difference #3

• Read before you code
• We can’t build an OS from scratch in a semester
 – Start with very primitive baseline code
• You must read a substantial amount of (well-written, well-documented) code before starting
 the projects
 – All of Pintos is about 7,000 lines
 – Must intimately understand probably 500-1000 lines,
 will be introduced gradually
 – Welcome to read all nitty-gritty details

Project Difference #4

• Only 50% of your grade comes from test cases
 – All test cases are public
• 50% is given for design & documentation
 – Requires design documents
 – Explain your design rationale
 – Create maintainable code, of “peer review” quality
 – Will grade on code quality
 – No credit for descriptions of unimplemented designs, though

Project Difference #5

• We use C, not C++
• Note: C is a subset of C++
• Don’t have virtual methods, don’t have
 templates, don’t have rtti
• Still use object-orientation, still use
 encapsulation
• Most OS are written in C, not C++.

Late Policy

• No late submissions will be accepted.
• Instead, you have 4 late days:
 – Self-granted extensions, no need to ask for
 permission
• Contact instructor in extraordinary
 circumstances only
 – Job interviews do not count

Grading

• Tentative breakdown (subject to change):
 – 15% Midterm
 – 30% Final
 – 55% Projects
• Not grading on a standard scale; grade will be based on
 a curve:
 – Median will divide B- and B
• Grading on a curve means every assignment is important
• Additional stipulations to pass the class
 (aka “Auto-Fail Rules”)
 – Must pass all tests of Project 2 by end of semester
 – Must show “reasonable effort” in both Project 3 & 4
 – Necessary, not sufficient conditions

Honor Code

• Will be strictly enforced in this class
• Do not cheat
 – Observe collaboration policy outlined in syllabus
• Will use MOSS for software cheating detection
 – Do not borrow code from other offerings
 – Follow collaboration policy
• Read all policies posted on the website
 – “I was not aware…” is no excuse
• If in doubt, ask!
Acknowledgements

• Will draw in lectures from
 – Silberschatz et al’s book ("Dinosaur book")
 – And other texts, in particular Stallings’s book and
 Tannenbaum’s *Modern Operating Systems*
 – Course material created in other courses using Pintos
 • E.g., CS140 @ Stanford, CS 326 @ U San Francisco
 – Course material created by McQuain & other VT
 instructors
 – And other sources