Instructions:

• Print your name in the space provided below.
• This examination is closed book and closed notes. No calculators or other computing devices may be used.
• Answer each question in the space provided. If you need to continue an answer onto the back of a page, clearly indicate that and label the continuation with the question number.
• If you want partial credit, justify your answers, even when justification is not explicitly required.
• There are 11 questions, priced as marked. The maximum score is 100.
• When you have completed the test, sign the pledge at the bottom of this page and turn in the test.
• Note that failure to return this test, or to discuss its content with a student who has not taken it, is a violation of the Honor Code.

Do not start the test until instructed to do so!

Name [Solution]

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

[signed]
1. [10 points] For each of the following sorting algorithms, give big-Theta notation for the average and worst-case running
times (swaps plus compares) on input of size N:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Average</th>
<th>Worst</th>
</tr>
</thead>
<tbody>
<tr>
<td>InsertionSort</td>
<td>(n^2)</td>
<td>(n^2)</td>
</tr>
<tr>
<td>QuickSort</td>
<td>(n \log n)</td>
<td>(n^2)</td>
</tr>
<tr>
<td>HeapSort</td>
<td>(n \log n)</td>
<td>(n \log n)</td>
</tr>
</tbody>
</table>

2. [5 points] The implementation of QuickSort in Kruse/Ryba selects the pivot value from the middle of the sublist, rather
than from one of the ends. Explain a reasonable motivation for that decision.

 The worst case for QuickSort is achieved if each pivot is either the maximum or minimum value in the
current sublist. If the list is already sorted, then choosing either the first or last element guarantees the
worst case is achieved. Choosing from the middle is a hedge against that.

3. [5 points] Aside from switching to a nonrecursive implementation, describe one modification of the implementation of
QuickSort given in the course notes that will improve its performance.

 When sublists become relatively short, say length 10, apply an efficient alternative, such as an
insertion sort to complete the sorting of that sublist. This eliminates many recursive calls.

 Choose the pivot value more carefully. For example, find three distinct values in the current sublist
and take their median value. If there are not three distinct values, then the sublist is nearly sorted and
can be efficiently finished off using another sort, such as insertion.

4. [10 points] Indicate whether each of the following statements is true or false:

 a) \(f(n) = 5n^2 + 3n + 2\) is \(\Theta(n)\) **TRUE** **FALSE**
 b) \(f(n) = 5n^2 + 3n + 2\) is \(\Omega(n)\) **TRUE** **FALSE**
 c) \(g(n) = 3n + 100 \log n\) is \(O(n^2)\) **TRUE** **FALSE**
 d) \(g(n) = 3n + 100 \log n\) is \(\Omega(n)\) **TRUE** **FALSE**
 e) \(g(n) = 3n + 100 \log n\) is \(O(\log n)\) **TRUE** **FALSE**
5. You must keep track of some data. Your options are:

1) a binary search tree of records (assume it is well balanced)
2) a linked-list of records stored in order of insertion
3) an array-based list of records maintained in sorted order

a) [12 points] Suppose that you must first build a data structure holding \(2^{10}\) given elements, and then you must perform \(2^{20}\) searches on that data structure. For each option, use the average case \(\Theta\) time complexity results of each data structure to determine the costs associated with that data structure in this situation. Since you know exactly how many elements are stored, and how many searches must be performed, the cost values should be numbers, not expressed in terms of \(N\).

Note that space cost is not a consideration.

<table>
<thead>
<tr>
<th>Option</th>
<th>Cost of construction</th>
<th>Cost of (2^{20}) searches</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST</td>
<td>(10 \times 2^{10})</td>
<td>(10 \times 2^{20})</td>
<td></td>
</tr>
<tr>
<td>unsorted linked list</td>
<td>(2^{10})</td>
<td>(2^{29})</td>
<td></td>
</tr>
<tr>
<td>sorted array</td>
<td>(2^{20}) or (11 \times 2^{10})</td>
<td>(10 \times 2^{20})</td>
<td></td>
</tr>
</tbody>
</table>

BST: Building costs \(n \log n\), which would be \(2^{10} \log 2^{10} = 10 \times 2^{10}\).
Assuming a balanced BST, each search costs on average \(\log n\), which would be \(\log 2^{10} = 10\), so the total cost of \(2^{20}\) searches would be \(10 \times 2^{20}\).

LL: Building costs \(n\) or \(2^{10}\), since each insertion has cost 1.
Search, on average costs \(n/2\) or \(2^{9}\), and so the total cost of \(2^{20}\) searches would be \(2^{29}\).

SA: Building cost depends on the method you assume. Inserting the elements one by one in sorted order would have cost \(n^2\) or \(2^{20}\). Inserting the elements into an array and then sorting efficiently would cost \(n + n \log n\), which would be \(2^{10} + 2^{10} \log 2^{10}\) or \(10 \times 2^{10} + 2^{10} = 11 \times 2^{10}\). Each search would have cost \(\log n\), or \(\log 2^{10} = 10\). So the total cost of all the searches would be \(10 \times 2^{20}\).

b) [3 points] Based on your analysis above, which of the data structures would be the worst choice in the given situation?

The linked list has the worst overall cost.
6. [10 points] Use limits to prove that \(f(n) = n \log n \) is NOT \(\Theta(n^2) \).

By a theorem, \(f(n) \) is \(\Theta(g(n)) \) if and only if \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \) where \(c \) is a positive, finite constant.

Now, \(\lim_{n \to \infty} \frac{n \log n}{n^2} = \lim_{n \to \infty} \frac{\log n}{n} = \lim_{n \to \infty} \frac{1/(n \ln 2)}{1} = \lim_{n \to \infty} \frac{1}{n \ln 2} = 0 \) so by the cited theorem, \(n \log n \) is NOT \(\Theta(n^2) \).

7. [10 points] Suppose that \(T \) is a full binary tree.

The Full Binary Tree Theorem says that an FBT with \(k \) internal nodes has \(k+1 \) leaf nodes. Applying that fact:

a) If \(T \) has 100 internal nodes then the number of leaves in \(T \) is \(\underline{101} \).

b) If \(T \) has a total of 1001 nodes, then \(\underline{500} \) of them must have children.

8. [10 points] Draw the BST that results from inserting the following data values in the order given:

\[
42 \quad 17 \quad 89 \quad 53 \quad 72 \quad 91 \quad 3 \quad 88
\]
9. [5 points] Consider the heap given below. If the heap elements were stored in an array, as usual, what element would be stored at the index 7?

```
93
  /     \
91     2
 /   \
1     84
 / \
3 67
 / \
4 79
 / \
5 83
 / \
6 42
 / \
7 56
 / \
0 61
 / \
21 80
```

10. [10 points] Consider the BST and NodeT template interfaces given at the bottom of this page. Write the body of the member function Find(), which returns true if its parameter occurs in the BST and false otherwise.

```cpp
template <class Data> bool BST<Data>::Find(const Data& toFind) {
    return FindHelper(Root, toFind);
}

template <class Data>
bool BST<Data>::FindHelper(NodeT<Data>* sRoot, const Data& toFind) {
    if (sRoot == NULL) return false;
    Data currentData = sRoot->getData();
    if (currentData == toFind) return true;
    if (toFind < currentData)
        return FindHelper(sRoot->getLeft(), toFind);
    else
        return FindHelper(sRoot->getRight(), toFind);
}
```

```cpp
template <class Data> class NodeT {  
  private:
    Data Element;
    NodeT<Data>* Left;
    NodeT<Data>* Right;

  public:
    // irrelevant members omitted
    Data getData() const;
    NodeT<Data>* getLeft() const;
    NodeT<Data>* getRight() const;
};
```

```cpp
template <class Data> class BSTreeT {  
  private:
    NodeT<Data>* Root;

    // irrelevant members omitted
  public:
    // irrelevant members omitted
    bool Find(const Data& D);
};
```
11. Consider the `BinaryTreeT` template interface given at the bottom of this page.

```cpp
template <class Data>
void BinaryTreeT<Data>::ClearHelper(NodeT<Data>* sRoot) {
    if (sRoot == NULL) return;
    ClearHelper(sRoot->getLeft());
    delete sRoot;
    ClearHelper(sRoot->getRight());
}

template <class Data> BinaryTreeT<Data>::~BinaryTreeT() {
    ClearHelper(Root);
}
```

a) [2 points] What type of traversal does `ClearHelper()` perform on the tree? __inorder__

b) [8 points] Will the given destructor correctly delete all of the tree nodes? __No.__

If not, write any modifications that are necessary to fix the problem below:

```cpp
template <class Data>
void BinaryTreeT<Data>::ClearHelper(NodeT<Data>* sRoot) {
    if (sRoot == NULL) return;
    ClearHelper(sRoot->getLeft());
    ClearHelper(sRoot->getRight());
    delete sRoot;
}
```